These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

253 related articles for article (PubMed ID: 27454776)

  • 1. Acridinium-Based Photocatalysts: A Sustainable Option in Photoredox Catalysis.
    Joshi-Pangu A; Lévesque F; Roth HG; Oliver SF; Campeau LC; Nicewicz D; DiRocco DA
    J Org Chem; 2016 Aug; 81(16):7244-9. PubMed ID: 27454776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Shining Light on Copper: Unique Opportunities for Visible-Light-Catalyzed Atom Transfer Radical Addition Reactions and Related Processes.
    Reiser O
    Acc Chem Res; 2016 Sep; 49(9):1990-6. PubMed ID: 27556932
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of visible-light-activated metal complexes and their use in photoredox/nickel dual catalysis.
    Kelly CB; Patel NR; Primer DN; Jouffroy M; Tellis JC; Molander GA
    Nat Protoc; 2017 Mar; 12(3):472-492. PubMed ID: 28151464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ion-pair reorganization regulates reactivity in photoredox catalysts.
    Earley JD; Zieleniewska A; Ripberger HH; Shin NY; Lazorski MS; Mast ZJ; Sayre HJ; McCusker JK; Scholes GD; Knowles RR; Reid OG; Rumbles G
    Nat Chem; 2022 Jul; 14(7):746-753. PubMed ID: 35422457
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and Characterization of Acridinium Dyes for Photoredox Catalysis.
    White AR; Wang L; Nicewicz DA
    Synlett; 2019; 30(7):827-832. PubMed ID: 34092926
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recent advances in visible-light-mediated functionalization of olefins and alkynes using copper catalysts.
    Ramani A; Desai B; Dholakiya BZ; Naveen T
    Chem Commun (Camb); 2022 Jul; 58(57):7850-7873. PubMed ID: 35770649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoinduced Arylation of Acridinium Salts: Tunable Photoredox Catalysts for C-O Bond Cleavage.
    Cao YX; Zhu G; Li Y; Le Breton N; Gourlaouen C; Choua S; Boixel J; Jacquot de Rouville HP; Soulé JF
    J Am Chem Soc; 2022 Apr; 144(13):5902-5909. PubMed ID: 35316065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the Kinetics and Spectroscopy of Photoredox Catalysis and Transition-Metal-Free Alternatives.
    Pitre SP; McTiernan CD; Scaiano JC
    Acc Chem Res; 2016 Jun; 49(6):1320-30. PubMed ID: 27023767
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Radical carbon-carbon bond formations enabled by visible light active photocatalysts.
    Wallentin CJ; Nguyen JD; Stephenson CR
    Chimia (Aarau); 2012; 66(6):394-8. PubMed ID: 22871282
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design and application of aminoacridinium organophotoredox catalysts.
    Zilate B; Fischer C; Sparr C
    Chem Commun (Camb); 2020 Feb; 56(12):1767-1775. PubMed ID: 31998897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of photocatalyst excited state lifetime on the rate of photoredox catalysis.
    Ochola JR; Wolf MO
    Org Biomol Chem; 2016 Sep; 14(38):9088-9092. PubMed ID: 27714220
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ad Hoc Adjustment of Photoredox Properties by the Late-Stage Diversification of Acridinium Photocatalysts.
    Hutskalova V; Sparr C
    Org Lett; 2021 Jul; 23(13):5143-5147. PubMed ID: 34110179
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enhancing Photoredox Catalysis in Aqueous Environments: Ruthenium Aqua Complex Derivatization of Graphene Oxide and Graphite Rods for Efficient Visible-Light-Driven Hybrid Catalysts.
    Affès S; Stamatelou AM; Fontrodona X; Kabadou A; Viñas C; Teixidor F; Romero I
    ACS Appl Mater Interfaces; 2024 Jan; 16(1):507-519. PubMed ID: 38114421
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical Modification of Dehydrated Amino Acids in Natural Antimicrobial Peptides by Photoredox Catalysis.
    de Bruijn AD; Roelfes G
    Chemistry; 2018 Aug; 24(44):11314-11318. PubMed ID: 29939448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic Origin of Photoredox Catalysis Involving Iron(II) Polypyridyl Chromophores.
    Woodhouse MD; McCusker JK
    J Am Chem Soc; 2020 Sep; 142(38):16229-16233. PubMed ID: 32914970
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper's rapid ascent in visible-light photoredox catalysis.
    Hossain A; Bhattacharyya A; Reiser O
    Science; 2019 May; 364(6439):. PubMed ID: 31048464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery and Elucidation of Counteranion Dependence in Photoredox Catalysis.
    Farney EP; Chapman SJ; Swords WB; Torelli MD; Hamers RJ; Yoon TP
    J Am Chem Soc; 2019 Apr; 141(15):6385-6391. PubMed ID: 30897327
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Light Runs Across Iron Catalysts in Organic Transformations.
    Zhou WJ; Wu XD; Miao M; Wang ZH; Chen L; Shan SY; Cao GM; Yu DG
    Chemistry; 2020 Nov; 26(66):15052-15064. PubMed ID: 32614093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dearomative Cycloadditions Utilizing an Organic Photosensitizer: An Alternative to Iridium Catalysis.
    Rolka AB; Koenig B
    Org Lett; 2020 Jul; 22(13):5035-5040. PubMed ID: 32567316
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Visible-light photoredox-catalyzed desulfurization of thiol- and disulfide-containing amino acids and small peptides.
    Lee M; Neukirchen S; Cabrele C; Reiser O
    J Pept Sci; 2017 Jul; 23(7-8):556-562. PubMed ID: 28612448
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.