BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 27454821)

  • 21. Decision Tree Predictive Learner-Based Approach for False Alarm Detection in ICU.
    Manna T; Swetapadma A; Abdar M
    J Med Syst; 2019 May; 43(7):191. PubMed ID: 31115734
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Reducing false asystole alarms in intensive care.
    Dekimpe R; Heldt T
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():2292-2295. PubMed ID: 29060355
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sensor fusion methods for reducing false alarms in heart rate monitoring.
    Borges G; Brusamarello V
    J Clin Monit Comput; 2016 Dec; 30(6):859-867. PubMed ID: 26439831
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Collection of annotated data in a clinical validation study for alarm algorithms in intensive care--a methodologic framework.
    Siebig S; Kuhls S; Imhoff M; Langgartner J; Reng M; Schölmerich J; Gather U; Wrede CE
    J Crit Care; 2010 Mar; 25(1):128-35. PubMed ID: 19327311
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Life-threatening arrhythmia verification in ICU patients using the joint cardiovascular dynamical model and a Bayesian filter.
    Sayadi O; Shamsollahi MB
    IEEE Trans Biomed Eng; 2011 Oct; 58(10):2748-57. PubMed ID: 21324772
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Heart beat detection using a multimodal data coupling method.
    Mollakazemi MJ; Atyabi SA; Ghaffari A
    Physiol Meas; 2015 Aug; 36(8):1729-42. PubMed ID: 26218667
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Real-Time Arrhythmia Detection Using Hybrid Convolutional Neural Networks.
    Bollepalli SC; Sevakula RK; Au-Yeung WM; Kassab MB; Merchant FM; Bazoukis G; Boyer R; Isselbacher EM; Armoundas AA
    J Am Heart Assoc; 2021 Dec; 10(23):e023222. PubMed ID: 34854319
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reducing false alarms of intensive care online-monitoring systems: an evaluation of two signal extraction algorithms.
    Borowski M; Siebig S; Wrede C; Imhoff M
    Comput Math Methods Med; 2011; 2011():143480. PubMed ID: 21461385
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A contrastive learning approach for ICU false arrhythmia alarm reduction.
    Zhou Y; Zhao G; Li J; Sun G; Qian X; Moody B; Mark RG; Lehman LH
    Sci Rep; 2022 Mar; 12(1):4689. PubMed ID: 35304473
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Reduction of false arterial blood pressure alarms using signal quality assessment and relationships between the electrocardiogram and arterial blood pressure.
    Zong W; Moody GB; Mark RG
    Med Biol Eng Comput; 2004 Sep; 42(5):698-706. PubMed ID: 15503972
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Cardiac arrhythmia detection using photoplethysmography.
    Paradkar N; Chowdhury SR
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():113-116. PubMed ID: 29059823
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Addressing the flaws of current critical alarms: a fuzzy constraint satisfaction approach.
    Otero A; Félix P; Barro S; Palacios F
    Artif Intell Med; 2009 Nov; 47(3):219-38. PubMed ID: 19796924
    [TBL] [Abstract][Full Text] [Related]  

  • 33. False ventricular tachycardia alarm suppression in the ICU based on the discrete wavelet transform in the ECG signal.
    Salas-Boni R; Bai Y; Harris PR; Drew BJ; Hu X
    J Electrocardiol; 2014; 47(6):775-80. PubMed ID: 25172188
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A statistical approach for determination of time plane features from digitized ECG.
    Chatterjee HK; Gupta R; Mitra M
    Comput Biol Med; 2011 May; 41(5):278-84. PubMed ID: 21458786
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Double Trouble: Patients With Both True and False Arrhythmia Alarms.
    Nguyen SC; Suba S; Hu X; Pelter MM
    Crit Care Nurse; 2020 Apr; 40(2):14-23. PubMed ID: 32236427
    [TBL] [Abstract][Full Text] [Related]  

  • 36. False alarm reduction in BSN-based cardiac monitoring using signal quality and activity type information.
    Tanantong T; Nantajeewarawat E; Thiemjarus S
    Sensors (Basel); 2015 Feb; 15(2):3952-74. PubMed ID: 25671512
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Use of pagers with an alarm escalation system to reduce cardiac monitor alarm signals.
    Cvach MM; Frank RJ; Doyle P; Stevens ZK
    J Nurs Care Qual; 2014; 29(1):9-18. PubMed ID: 23963169
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Monitor alarm fatigue: standardizing use of physiological monitors and decreasing nuisance alarms.
    Graham KC; Cvach M
    Am J Crit Care; 2010 Jan; 19(1):28-34; quiz 35. PubMed ID: 20045845
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Value of a computerized system of real time analysis of arrhythmias in the intensive care unit. Description of the ATREC system].
    Dupays M; Jammal M; Zoute Y; Assemann P; Thery C
    Ann Cardiol Angeiol (Paris); 1983; 32(1):47-54. PubMed ID: 6688164
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Learning From Alarms: A Robust Learning Approach for Accurate Photoplethysmography-Based Atrial Fibrillation Detection Using Eight Million Samples Labeled With Imprecise Arrhythmia Alarms.
    Ding C; Guo Z; Rudin C; Xiao R; Shah A; Do DH; Lee RJ; Clifford G; Nahab FB; Hu X
    IEEE J Biomed Health Inform; 2024 May; 28(5):2650-2661. PubMed ID: 38300786
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.