These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 27454876)

  • 1. Discrete classification technique applied to TV advertisements liking recognition system based on low-cost EEG headsets.
    Soria Morillo LM; Alvarez-Garcia JA; Gonzalez-Abril L; Ortega Ramírez JA
    Biomed Eng Online; 2016 Jul; 15 Suppl 1(Suppl 1):75. PubMed ID: 27454876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Understanding the impact of TV commercials: electrical neuroimaging.
    Vecchiato G; Kong W; Maglione AG; Wei D
    IEEE Pulse; 2012; 3(3):42-7. PubMed ID: 22678840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of TV commercials using neurophysiological responses.
    Yang T; Lee DY; Kwak Y; Choi J; Kim C; Kim SP
    J Physiol Anthropol; 2015 Apr; 34(1):19. PubMed ID: 25906845
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Channel selection and classification of electroencephalogram signals: an artificial neural network and genetic algorithm-based approach.
    Yang J; Singh H; Hines EL; Schlaghecken F; Iliescu DD; Leeson MS; Stocks NG
    Artif Intell Med; 2012 Jun; 55(2):117-26. PubMed ID: 22503644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A real-time classification algorithm for EEG-based BCI driven by self-induced emotions.
    Iacoviello D; Petracca A; Spezialetti M; Placidi G
    Comput Methods Programs Biomed; 2015 Dec; 122(3):293-303. PubMed ID: 26358282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in brain activity during the observation of TV commercials by using EEG, GSR and HR measurements.
    Vecchiato G; Astolfi L; De Vico Fallani F; Cincotti F; Mattia D; Salinari S; Soranzo R; Babiloni F
    Brain Topogr; 2010 Jun; 23(2):165-79. PubMed ID: 20033272
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Decision tree structure based classification of EEG signals recorded during two dimensional cursor movement imagery.
    Aydemir O; Kayikcioglu T
    J Neurosci Methods; 2014 May; 229():68-75. PubMed ID: 24751647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of EEG signals using neural network and logistic regression.
    Subasi A; Erçelebi E
    Comput Methods Programs Biomed; 2005 May; 78(2):87-99. PubMed ID: 15848265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A small frog that makes a big difference: brain wave testing of TV advertisements.
    Ohme R; Matukin M
    IEEE Pulse; 2012; 3(3):28-33. PubMed ID: 22678837
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wearable electroencephalography. What is it, why is it needed, and what does it entail?
    Casson A; Yates D; Smith S; Duncan J; Rodriguez-Villegas E
    IEEE Eng Med Biol Mag; 2010; 29(3):44-56. PubMed ID: 20659857
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A user-friendly SSVEP-based brain-computer interface using a time-domain classifier.
    Luo A; Sullivan TJ
    J Neural Eng; 2010 Apr; 7(2):26010. PubMed ID: 20332551
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Artificial neural network based approach to EEG signal simulation.
    Tomasevic NM; Neskovic AM; Neskovic NJ
    Int J Neural Syst; 2012 Jun; 22(3):1250008. PubMed ID: 23627624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum neural network-based EEG filtering for a brain-computer interface.
    Gandhi V; Prasad G; Coyle D; Behera L; McGinnity TM
    IEEE Trans Neural Netw Learn Syst; 2014 Feb; 25(2):278-88. PubMed ID: 24807028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The application of EEG power for the prediction and interpretation of consumer decision-making: A neuromarketing study.
    Golnar-Nik P; Farashi S; Safari MS
    Physiol Behav; 2019 Aug; 207():90-98. PubMed ID: 31047949
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain activity patterns induced by interrupting the cognitive processes with online advertising.
    Rejer I; Jankowski J
    Cogn Process; 2017 Nov; 18(4):419-430. PubMed ID: 28603804
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Uncorrelated multiway discriminant analysis for motor imagery EEG classification.
    Liu Y; Zhao Q; Zhang L
    Int J Neural Syst; 2015 Jun; 25(4):1550013. PubMed ID: 25986750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recording brain waves at the supermarket: what can we learn from a shopper's brain?
    Sands SF; Sands JA
    IEEE Pulse; 2012; 3(3):34-7. PubMed ID: 22678838
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modified CC-LR algorithm with three diverse feature sets for motor imagery tasks classification in EEG based brain-computer interface.
    Siuly ; Li Y; Paul Wen P
    Comput Methods Programs Biomed; 2014 Mar; 113(3):767-80. PubMed ID: 24440135
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of linear, nonlinear, and feature selection methods for EEG signal classification.
    Garrett D; Peterson DA; Anderson CW; Thaut MH
    IEEE Trans Neural Syst Rehabil Eng; 2003 Jun; 11(2):141-4. PubMed ID: 12899257
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An improved I-FAST system for the diagnosis of Alzheimer's disease from unprocessed electroencephalograms by using robust invariant features.
    Buscema M; Vernieri F; Massini G; Scrascia F; Breda M; Rossini PM; Grossi E
    Artif Intell Med; 2015 May; 64(1):59-74. PubMed ID: 25997573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.