BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 27455093)

  • 1. Mutation-based selection and analysis of Komagataeibacter hansenii HDM1-3 for improvement in bacterial cellulose production.
    Li Y; Tian J; Tian H; Chen X; Ping W; Tian C; Lei H
    J Appl Microbiol; 2016 Nov; 121(5):1323-1334. PubMed ID: 27455093
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic adaptability shifts of cell membrane fatty acids of Komagataeibacter hansenii HDM1-3 improve acid stress resistance and survival in acidic environments.
    Li Y; Yan P; Lei Q; Li B; Sun Y; Li S; Lei H; Xie N
    J Ind Microbiol Biotechnol; 2019 Nov; 46(11):1491-1503. PubMed ID: 31512094
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Production of high crystallinity type-I cellulose from Komagataeibacter hansenii JR-02 isolated from Kombucha tea.
    Li J; Chen G; Zhang R; Wu H; Zeng W; Liang Z
    Biotechnol Appl Biochem; 2019 Jan; 66(1):108-118. PubMed ID: 30359481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellulose synthesis by Komagataeibacter rhaeticus strain P 1463 isolated from Kombucha.
    Semjonovs P; Ruklisha M; Paegle L; Saka M; Treimane R; Skute M; Rozenberga L; Vikele L; Sabovics M; Cleenwerck I
    Appl Microbiol Biotechnol; 2017 Feb; 101(3):1003-1012. PubMed ID: 27678116
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Preparation and characterization of bacterial cellulose produced from fruit and vegetable peels by Komagataeibacter hansenii GA2016.
    Güzel M; Akpınar Ö
    Int J Biol Macromol; 2020 Nov; 162():1597-1604. PubMed ID: 32777420
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of pH Buffer and Carbon Metabolism on the Yield and Mechanical Properties of Bacterial Cellulose Produced by
    Li Z; Chen SQ; Cao X; Li L; Zhu J; Yu H
    J Microbiol Biotechnol; 2021 Mar; 31(3):429-438. PubMed ID: 33323677
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reconstruction of a Genome-scale Metabolic Network of Komagataeibacter nataicola RZS01 for Cellulose Production.
    Zhang H; Ye C; Xu N; Chen C; Chen X; Yuan F; Xu Y; Yang J; Sun D
    Sci Rep; 2017 Aug; 7(1):7911. PubMed ID: 28801647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of alternative energy sources on bacterial cellulose characteristics produced by Komagataeibacter medellinensis.
    Molina-Ramírez C; Enciso C; Torres-Taborda M; Zuluaga R; Gañán P; Rojas OJ; Castro C
    Int J Biol Macromol; 2018 Oct; 117():735-741. PubMed ID: 29847783
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Komagataeibacter rhaeticus as an alternative bacteria for cellulose production.
    Machado RTA; Gutierrez J; Tercjak A; Trovatti E; Uahib FGM; Moreno GP; Nascimento AP; Berreta AA; Ribeiro SJL; Barud HS
    Carbohydr Polym; 2016 Nov; 152():841-849. PubMed ID: 27516336
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and identification of cellulose-producing strain Komagataeibacter intermedius from fermented fruit juice.
    Lin SP; Huang YH; Hsu KD; Lai YJ; Chen YK; Cheng KC
    Carbohydr Polym; 2016 Oct; 151():827-833. PubMed ID: 27474630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production of nano bacterial cellulose from beverage industrial waste of citrus peel and pomace using Komagataeibacter xylinus.
    Fan X; Gao Y; He W; Hu H; Tian M; Wang K; Pan S
    Carbohydr Polym; 2016 Oct; 151():1068-1072. PubMed ID: 27474656
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterisation of films and nanopaper obtained from cellulose synthesised by acetic acid bacteria.
    Rozenberga L; Skute M; Belkova L; Sable I; Vikele L; Semjonovs P; Saka M; Ruklisha M; Paegle L
    Carbohydr Polym; 2016 Jun; 144():33-40. PubMed ID: 27083790
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards control of cellulose biosynthesis by Komagataeibacter using systems-level and strain engineering strategies: current progress and perspectives.
    Ryngajłło M; Jędrzejczak-Krzepkowska M; Kubiak K; Ludwicka K; Bielecki S
    Appl Microbiol Biotechnol; 2020 Aug; 104(15):6565-6585. PubMed ID: 32529377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bio-conversion of kitchen waste into bacterial cellulose using a new multiple carbon utilizing Komagataeibacter rhaeticus: Fermentation profiles and genome-wide analysis.
    Li ZY; Azi F; Ge ZW; Liu YF; Yin XT; Dong MS
    Int J Biol Macromol; 2021 Nov; 191():211-221. PubMed ID: 34547311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Novel bacterial cellulose membrane biosynthesized by a new and highly efficient producer Komagataeibacter rhaeticus TJPU03.
    He X; Meng H; Song H; Deng S; He T; Wang S; Wei D; Zhang Z
    Carbohydr Res; 2020 Jul; 493():108030. PubMed ID: 32442702
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of pullulan additive and co-culture of Aureobasidium pullulans on bacterial cellulose produced by Komagataeibacter hansenii.
    Hu H; Catchmark JM; Demirci A
    Bioprocess Biosyst Eng; 2022 Mar; 45(3):573-587. PubMed ID: 35184225
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Knockdown of motility-related genes of
    Liu J; Wang X; Peng Z; Xin B; Zhong C
    Sheng Wu Gong Cheng Xue Bao; 2024 Jun; 40(6):1856-1867. PubMed ID: 38914496
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bacterial cellulose production by Komagataeibacter hansenii using algae-based glucose.
    Uzyol HK; Saçan MT
    Environ Sci Pollut Res Int; 2017 Apr; 24(12):11154-11162. PubMed ID: 27312900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bacterial cellulose production by Komagataeibacter hansenii can be improved by successive batch culture.
    Gomes RJ; Ida EI; Spinosa WA
    Braz J Microbiol; 2023 Jun; 54(2):703-713. PubMed ID: 36800074
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fruit peels support higher yield and superior quality bacterial cellulose production.
    Kumbhar JV; Rajwade JM; Paknikar KM
    Appl Microbiol Biotechnol; 2015 Aug; 99(16):6677-91. PubMed ID: 25957154
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.