BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 27455093)

  • 21. Reconstruction, verification and in-silico analysis of a genome-scale metabolic model of bacterial cellulose producing Komagataeibacter xylinus.
    Rezazadeh M; Babaeipour V; Motamedian E
    Bioprocess Biosyst Eng; 2020 Jun; 43(6):1017-1026. PubMed ID: 32008096
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Comparative genomics of the Komagataeibacter strains-Efficient bionanocellulose producers.
    Ryngajłło M; Kubiak K; Jędrzejczak-Krzepkowska M; Jacek P; Bielecki S
    Microbiologyopen; 2019 May; 8(5):e00731. PubMed ID: 30365246
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of cellulose synthesis in a high-producing acetic acid bacterium Komagataeibacter hansenii.
    Bimmer M; Reimer M; Klingl A; Ludwig C; Zollfrank C; Liebl W; Ehrenreich A
    Appl Microbiol Biotechnol; 2023 May; 107(9):2947-2967. PubMed ID: 36930278
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Production of bacterial cellulose from Komagataeibacter saccharivorans strain BC1 isolated from rotten green grapes.
    Gopu G; Govindan S
    Prep Biochem Biotechnol; 2018; 48(9):842-852. PubMed ID: 30303756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modification of bacterial nanocellulose properties through mutation of motility related genes in Komagataeibacter hansenii ATCC 53582.
    Jacek P; Kubiak K; Ryngajłło M; Rytczak P; Paluch P; Bielecki S
    N Biotechnol; 2019 Sep; 52():60-68. PubMed ID: 31096013
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Rational design of a scalable bioprocess platform for bacterial cellulose production.
    Basu A; Vadanan SV; Lim S
    Carbohydr Polym; 2019 Mar; 207():684-693. PubMed ID: 30600054
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bacterial Cellulose Production from agricultural Residues by two
    Akintunde MO; Adebayo-Tayo BC; Ishola MM; Zamani A; Horváth IS
    Bioengineered; 2022 Apr; 13(4):10010-10025. PubMed ID: 35416127
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural changes of bacterial nanocellulose pellicles induced by genetic modification of Komagataeibacter hansenii ATCC 23769.
    Jacek P; Ryngajłło M; Bielecki S
    Appl Microbiol Biotechnol; 2019 Jul; 103(13):5339-5353. PubMed ID: 31037382
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cellulosic Nanomaterial Production Via Fermentation by
    Park MS; Jung YH; Oh SY; Kim MJ; Bang WY; Lim YW
    J Microbiol Biotechnol; 2019 Apr; 29(4):617-624. PubMed ID: 30856704
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Statistical optimization and characterization of a biocellulose produced by local Egyptian isolate Komagataeibacter hansenii AS.5.
    Saleh AK; Soliman NA; Farrag AA; Ibrahim MM; El-Shinnawy NA; Abdel-Fattah YR
    Int J Biol Macromol; 2020 Feb; 144():198-207. PubMed ID: 31843613
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Genome sequence and characterization of the bcs clusters for the production of nanocellulose from the low pH resistant strain Komagataeibacter medellinensis ID13488.
    Hernández-Arriaga AM; Del Cerro C; Urbina L; Eceiza A; Corcuera MA; Retegi A; Auxiliadora Prieto M
    Microb Biotechnol; 2019 Jul; 12(4):620-632. PubMed ID: 30793484
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Gluconacetobacter hansenii subsp. nov., a high-yield bacterial cellulose producing strain induced by high hydrostatic pressure.
    Ge HJ; Du SK; Lin DH; Zhang JN; Xiang JL; Li ZX
    Appl Biochem Biotechnol; 2011 Dec; 165(7-8):1519-31. PubMed ID: 21947710
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Dissection of exopolysaccharide biosynthesis in Kozakia baliensis.
    Brandt JU; Jakob F; Behr J; Geissler AJ; Vogel RF
    Microb Cell Fact; 2016 Oct; 15(1):170. PubMed ID: 27716345
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A natural in situ fabrication method of functional bacterial cellulose using a microorganism.
    Gao M; Li J; Bao Z; Hu M; Nian R; Feng D; An D; Li X; Xian M; Zhang H
    Nat Commun; 2019 Jan; 10(1):437. PubMed ID: 30683871
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Coproduction of bacterial cellulose and pear vinegar by fermentation of pear peel and pomace.
    Ma X; Yuan H; Wang H; Yu H
    Bioprocess Biosyst Eng; 2021 Nov; 44(11):2231-2244. PubMed ID: 34165619
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Production and characterization of bacterial cellulose by Rhizobium sp. isolated from bean root.
    Almihyawi RAH; Musazade E; Alhussany N; Zhang S; Chen H
    Sci Rep; 2024 May; 14(1):10848. PubMed ID: 38740945
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization and optimization of production of bacterial cellulose from strain CGMCC 17276 based on whole-genome analysis.
    Lu T; Gao H; Liao B; Wu J; Zhang W; Huang J; Liu M; Huang J; Chang Z; Jin M; Yi Z; Jiang D
    Carbohydr Polym; 2020 Mar; 232():115788. PubMed ID: 31952596
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genetic modification for enhancing bacterial cellulose production and its applications.
    Singhania RR; Patel AK; Tsai ML; Chen CW; Di Dong C
    Bioengineered; 2021 Dec; 12(1):6793-6807. PubMed ID: 34519629
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of ethanol supplementation on the transcriptional landscape of bionanocellulose producer Komagataeibacter xylinus E25.
    Ryngajłło M; Jacek P; Cielecka I; Kalinowska H; Bielecki S
    Appl Microbiol Biotechnol; 2019 Aug; 103(16):6673-6688. PubMed ID: 31168651
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structural properties of optically clear bacterial cellulose produced by Komagataeibacter hansenii using arabitol.
    van Zyl EM; Kennedy MA; Nason W; Fenlon SJ; Young EM; Smith LJ; Bhatia SR; Coburn JM
    Biomater Adv; 2023 May; 148():213345. PubMed ID: 36889229
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.