These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 27455108)

  • 1. Applying GIS and Machine Learning Methods to Twitter Data for Multiscale Surveillance of Influenza.
    Allen C; Tsou MH; Aslam A; Nagel A; Gawron JM
    PLoS One; 2016; 11(7):e0157734. PubMed ID: 27455108
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The reliability of tweets as a supplementary method of seasonal influenza surveillance.
    Aslam AA; Tsou MH; Spitzberg BH; An L; Gawron JM; Gupta DK; Peddecord KM; Nagel AC; Allen C; Yang JA; Lindsay S
    J Med Internet Res; 2014 Nov; 16(11):e250. PubMed ID: 25406040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Regional Level Influenza Study with Geo-Tagged Twitter Data.
    Wang F; Wang H; Xu K; Raymond R; Chon J; Fuller S; Debruyn A
    J Med Syst; 2016 Aug; 40(8):189. PubMed ID: 27372953
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancing Seasonal Influenza Surveillance: Topic Analysis of Widely Used Medicinal Drugs Using Twitter Data.
    Kagashe I; Yan Z; Suheryani I
    J Med Internet Res; 2017 Sep; 19(9):e315. PubMed ID: 28899847
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A case study of the New York City 2012-2013 influenza season with daily geocoded Twitter data from temporal and spatiotemporal perspectives.
    Nagar R; Yuan Q; Freifeld CC; Santillana M; Nojima A; Chunara R; Brownstein JS
    J Med Internet Res; 2014 Oct; 16(10):e236. PubMed ID: 25331122
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Twitter mining for fine-grained syndromic surveillance.
    Velardi P; Stilo G; Tozzi AE; Gesualdo F
    Artif Intell Med; 2014 Jul; 61(3):153-63. PubMed ID: 24613716
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Can online self-reports assist in real-time identification of influenza vaccination uptake? A cross-sectional study of influenza vaccine-related tweets in the USA, 2013-2017.
    Huang X; Smith MC; Jamison AM; Broniatowski DA; Dredze M; Quinn SC; Cai J; Paul MJ
    BMJ Open; 2019 Jan; 9(1):e024018. PubMed ID: 30647040
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the impact of twitter on influenza epidemics.
    Pawelek KA; Oeldorf-Hirsch A; Rong L
    Math Biosci Eng; 2014 Dec; 11(6):1337-56. PubMed ID: 25365604
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Social media and flu: Media Twitter accounts as agenda setters.
    Yun GW; Morin D; Park S; Joa CY; Labbe B; Lim J; Lee S; Hyun D
    Int J Med Inform; 2016 Jul; 91():67-73. PubMed ID: 27185510
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influenza forecasting for French regions combining EHR, web and climatic data sources with a machine learning ensemble approach.
    Poirier C; Hswen Y; Bouzillé G; Cuggia M; Lavenu A; Brownstein JS; Brewer T; Santillana M
    PLoS One; 2021; 16(5):e0250890. PubMed ID: 34010293
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Social Media to Perform Local Influenza Surveillance in an Inner-City Hospital: A Retrospective Observational Study.
    Broniatowski DA; Dredze M; Paul MJ; Dugas A
    JMIR Public Health Surveill; 2015; 1(1):e5. PubMed ID: 27014744
    [TBL] [Abstract][Full Text] [Related]  

  • 12. What can we learn about the Ebola outbreak from tweets?
    Odlum M; Yoon S
    Am J Infect Control; 2015 Jun; 43(6):563-71. PubMed ID: 26042846
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Combining Search, Social Media, and Traditional Data Sources to Improve Influenza Surveillance.
    Santillana M; Nguyen AT; Dredze M; Paul MJ; Nsoesie EO; Brownstein JS
    PLoS Comput Biol; 2015 Oct; 11(10):e1004513. PubMed ID: 26513245
    [TBL] [Abstract][Full Text] [Related]  

  • 14. How to exploit twitter for public health monitoring?
    Denecke K; Krieck M; Otrusina L; Smrz P; Dolog P; Nejdl W; Velasco E
    Methods Inf Med; 2013; 52(4):326-39. PubMed ID: 23877537
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Forecasting influenza-like illness dynamics for military populations using neural networks and social media.
    Volkova S; Ayton E; Porterfield K; Corley CD
    PLoS One; 2017; 12(12):e0188941. PubMed ID: 29244814
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The complex relationship of realspace events and messages in cyberspace: case study of influenza and pertussis using tweets.
    Nagel AC; Tsou MH; Spitzberg BH; An L; Gawron JM; Gupta DK; Yang JA; Han S; Peddecord KM; Lindsay S; Sawyer MH
    J Med Internet Res; 2013 Oct; 15(10):e237. PubMed ID: 24158773
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Long Short-term Memory-Based Prediction of the Spread of Influenza-Like Illness Leveraging Surveillance, Weather, and Twitter Data: Model Development and Validation.
    Athanasiou M; Fragkozidis G; Zarkogianni K; Nikita KS
    J Med Internet Res; 2023 Feb; 25():e42519. PubMed ID: 36745490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regional level influenza study based on Twitter and machine learning method.
    Xue H; Bai Y; Hu H; Liang H
    PLoS One; 2019; 14(4):e0215600. PubMed ID: 31013324
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Do Global Cities Enable Global Views? Using Twitter to Quantify the Level of Geographical Awareness of U.S. Cities.
    Han SY; Tsou MH; Clarke KC
    PLoS One; 2015; 10(7):e0132464. PubMed ID: 26167942
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Social media based surveillance systems for healthcare using machine learning: A systematic review.
    Gupta A; Katarya R
    J Biomed Inform; 2020 Aug; 108():103500. PubMed ID: 32622833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.