These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 27455126)

  • 21. The effect of different light intensities and light/dark regimes on the performance of photosynthetic microalgae microbial fuel cell.
    Bazdar E; Roshandel R; Yaghmaei S; Mardanpour MM
    Bioresour Technol; 2018 Aug; 261():350-360. PubMed ID: 29679853
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Efficiency and biotechnological aspects of biogas production from microalgal substrates.
    Klassen V; Blifernez-Klassen O; Wobbe L; Schlüter A; Kruse O; Mussgnug JH
    J Biotechnol; 2016 Sep; 234():7-26. PubMed ID: 27449486
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-efficient acetate production from carbon dioxide using a bioanode microbial electrosynthesis system with bipolar membrane.
    Xiang Y; Liu G; Zhang R; Lu Y; Luo H
    Bioresour Technol; 2017 Jun; 233():227-235. PubMed ID: 28282609
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Electricity production and key exoelectrogens in a mixed-culture psychrophilic microbial fuel cell at 4 °C.
    Dai K; Yan Y; Wang QT; Zheng SJ; Huang ZQ; Sun T; Zeng RJ; Zhang F
    Appl Microbiol Biotechnol; 2022 Jun; 106(12):4801-4811. PubMed ID: 35759034
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anodic and cathodic microbial communities in single chamber microbial fuel cells.
    Daghio M; Gandolfi I; Bestetti G; Franzetti A; Guerrini E; Cristiani P
    N Biotechnol; 2015 Jan; 32(1):79-84. PubMed ID: 25291711
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sustainable power production in a membrane-less and mediator-less synthetic wastewater microbial fuel cell.
    Aldrovandi A; Marsili E; Stante L; Paganin P; Tabacchioni S; Giordano A
    Bioresour Technol; 2009 Jul; 100(13):3252-60. PubMed ID: 19303285
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Rhizosphere anode model explains high oxygen levels during operation of a Glyceria maxima PMFC.
    Timmers RA; Strik DP; Arampatzoglou C; Buisman CJ; Hamelers HV
    Bioresour Technol; 2012 Mar; 108():60-7. PubMed ID: 22265596
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A techno-economic approach for eliminating dye pollutants from industrial effluent employing microalgae through microbial fuel cells: Barriers and perspectives.
    Deka R; Shreya S; Mourya M; Sirotiya V; Rai A; Khan MJ; Ahirwar A; Schoefs B; Bilal M; Saratale GD; Marchand J; Saratale RG; Varjani S; Vinayak V
    Environ Res; 2022 Sep; 212(Pt D):113454. PubMed ID: 35597291
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Quorum-sensing mediated signals: A promising multi-functional modulators for separately enhancing algal yield and power generation in microbial fuel cell.
    Das S; Das S; Ghangrekar MM
    Bioresour Technol; 2019 Dec; 294():122138. PubMed ID: 31542496
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioelectrochemical Chromium(VI) Removal in Plant-Microbial Fuel Cells.
    Habibul N; Hu Y; Wang YK; Chen W; Yu HQ; Sheng GP
    Environ Sci Technol; 2016 Apr; 50(7):3882-9. PubMed ID: 26962848
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Microbial fuel cell powered by lipid extracted algae: A promising system for algal lipids and power generation.
    Khandelwal A; Vijay A; Dixit A; Chhabra M
    Bioresour Technol; 2018 Jan; 247():520-527. PubMed ID: 28972905
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Anaerobic digestate as substrate for microalgae culture: the role of ammonium concentration on the microalgae productivity.
    Uggetti E; Sialve B; Latrille E; Steyer JP
    Bioresour Technol; 2014; 152():437-43. PubMed ID: 24316486
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Microbial fuel cells meet with external resistance.
    Katuri KP; Scott K; Head IM; Picioreanu C; Curtis TP
    Bioresour Technol; 2011 Feb; 102(3):2758-66. PubMed ID: 21146983
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [Effect of Cu2+ on the power output of dual-chamber microbial fuel cell].
    Mu SJ; Li XF; Ren YP; Wang XH
    Huan Jing Ke Xue; 2014 Jul; 35(7):2791-7. PubMed ID: 25244870
    [TBL] [Abstract][Full Text] [Related]  

  • 36. CO(2) bio-mitigation using microalgae.
    Wang B; Li Y; Wu N; Lan CQ
    Appl Microbiol Biotechnol; 2008 Jul; 79(5):707-18. PubMed ID: 18483734
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The utilization of post-chlorinated municipal domestic wastewater for biomass and lipid production by Chlorella spp. under batch conditions.
    Mutanda T; Karthikeyan S; Bux F
    Appl Biochem Biotechnol; 2011 Aug; 164(7):1126-38. PubMed ID: 21347654
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A promising approach to enhance microalgae productivity by exogenous supply of vitamins.
    Tandon P; Jin Q; Huang L
    Microb Cell Fact; 2017 Nov; 16(1):219. PubMed ID: 29183381
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effects of biomass weight and light intensity on the performance of photosynthetic microbial fuel cells with Spirulina platensis.
    Fu CC; Su CH; Hung TC; Hsieh CH; Suryani D; Wu WT
    Bioresour Technol; 2009 Sep; 100(18):4183-6. PubMed ID: 19386488
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell.
    He Z; Huang Y; Manohar AK; Mansfeld F
    Bioelectrochemistry; 2008 Nov; 74(1):78-82. PubMed ID: 18774345
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.