These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

250 related articles for article (PubMed ID: 27455372)

  • 21. Temporal and spatial variation of greenhouse gas emissions from a limited-controlled landfill site.
    Zhang C; Guo Y; Wang X; Chen S
    Environ Int; 2019 Jun; 127():387-394. PubMed ID: 30954725
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Methane emission estimation from landfills in Korea (1978-2004): quantitative assessment of a new approach.
    Kim HS; Yi SM
    J Air Waste Manag Assoc; 2009 Jan; 59(1):70-7. PubMed ID: 19216190
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Technical and economic evaluation of biogas capture and treatment for the Piedras Blancas landfill in Córdoba, Argentina.
    Francisca FM; Montoro MA; Glatstein DA
    J Air Waste Manag Assoc; 2017 May; 67(5):537-549. PubMed ID: 27723443
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of uncertainty in estimation of methane collection from select U.S. landfills.
    Wang X; Nagpure AS; DeCarolis JF; Barlaz MA
    Environ Sci Technol; 2015 Feb; 49(3):1545-51. PubMed ID: 25604252
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Comparison of first-order-decay modeled and actual field measured municipal solid waste landfill methane data.
    Amini HR; Reinhart DR; Niskanen A
    Waste Manag; 2013 Dec; 33(12):2720-8. PubMed ID: 23988298
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Climate impacts of landfill gas emissions: Analysis for 20-year and 100-year time horizons.
    Manheim DC; Yeşiller N; Hanson JL; Blake DR
    Waste Manag; 2024 Sep; 186():318-330. PubMed ID: 38954923
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Spatial variability of nitrous oxide and methane emissions from an MBT landfill in operation: strong N2O hotspots at the working face.
    Harborth P; Fuss R; Münnich K; Flessa H; Fricke K
    Waste Manag; 2013 Oct; 33(10):2099-107. PubMed ID: 23453435
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Mitigating fugitive methane emissions from closed landfills: A pilot-scale field study.
    Nelson B; Zytner RG; Dulac Y; Cabral AR
    Sci Total Environ; 2022 Dec; 851(Pt 2):158351. PubMed ID: 36049680
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Mitigation of methane emissions in a pilot-scale biocover system at the AV Miljø Landfill, Denmark: 2. Methane oxidation.
    Scheutz C; Cassini F; De Schoenmaeker J; Kjeldsen P
    Waste Manag; 2017 May; 63():203-212. PubMed ID: 28161333
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Fugitive halocarbon emissions from working face of municipal solid waste landfills in China.
    Liu Y; Lu W; Dastyar W; Liu Y; Guo H; Fu X; Li H; Meng R; Zhao M; Wang H
    Waste Manag; 2017 Dec; 70():149-157. PubMed ID: 28917825
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Methane emissions from Icelandic landfills - A comparison between measured and modelled emissions.
    Scheutz C; Kjeld A; Fredenslund AM
    Waste Manag; 2022 Feb; 139():136-145. PubMed ID: 34968899
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Comparing estimates of fugitive landfill methane emissions using inverse plume modeling obtained with Surface Emission Monitoring (SEM), Drone Emission Monitoring (DEM), and Downwind Plume Emission Monitoring (DWPEM).
    Bel Hadj Ali N; Abichou T; Green R
    J Air Waste Manag Assoc; 2020 Apr; 70(4):410-424. PubMed ID: 32043942
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development of a low-maintenance measurement approach to continuously estimate methane emissions: A case study.
    Riddick SN; Hancock BR; Robinson AD; Connors S; Davies S; Allen G; Pitt J; Harris NRP
    Waste Manag; 2018 Mar; 73():210-219. PubMed ID: 28003116
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Hotspot detection and spatial distribution of methane emissions from landfills by a surface probe method.
    Gonzalez-Valencia R; Magana-Rodriguez F; Cristóbal J; Thalasso F
    Waste Manag; 2016 Sep; 55():299-305. PubMed ID: 26973281
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Assessing methods to estimate emissions of non-methane organic compounds from landfills.
    Saquing JM; Chanton JP; Yazdani R; Barlaz MA; Scheutz C; Blake DR; Imhoff PT
    Waste Manag; 2014 Nov; 34(11):2260-70. PubMed ID: 25108756
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Short-term landfill methane emissions dependency on wind.
    Delkash M; Zhou B; Han B; Chow FK; Rella CW; Imhoff PT
    Waste Manag; 2016 Sep; 55():288-98. PubMed ID: 26896003
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Greenhouse gas emissions during MSW landfilling in China: influence of waste characteristics and LFG treatment measures.
    Yang N; Zhang H; Shao LM; Lü F; He PJ
    J Environ Manage; 2013 Nov; 129():510-21. PubMed ID: 24018116
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evaluating the biochemical methane potential (BMP) of low-organic waste at Danish landfills.
    Mou Z; Scheutz C; Kjeldsen P
    Waste Manag; 2014 Nov; 34(11):2251-9. PubMed ID: 25106120
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Field assessment of semi-aerobic condition and the methane correction factor for the semi-aerobic landfills provided by IPCC guidelines.
    Jeong S; Nam A; Yi SM; Kim JY
    Waste Manag; 2015 Feb; 36():197-203. PubMed ID: 25488731
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Uncontrolled methane emissions from a MSW landfill surface: influence of landfill features and side slopes.
    Di Trapani D; Di Bella G; Viviani G
    Waste Manag; 2013 Oct; 33(10):2108-15. PubMed ID: 23465313
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.