These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

499 related articles for article (PubMed ID: 27455480)

  • 1. The feasibility of atlas-based automatic segmentation of MRI for H&N radiotherapy planning.
    Wardman K; Prestwich RJ; Gooding MJ; Speight RJ
    J Appl Clin Med Phys; 2016 Jul; 17(4):146-154. PubMed ID: 27455480
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Automatic segmentation of head and neck CT images for radiotherapy treatment planning using multiple atlases, statistical appearance models, and geodesic active contours.
    Fritscher KD; Peroni M; Zaffino P; Spadea MF; Schubert R; Sharp G
    Med Phys; 2014 May; 41(5):051910. PubMed ID: 24784389
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimal virtual monoenergetic image in "TwinBeam" dual-energy CT for organs-at-risk delineation based on contrast-noise-ratio in head-and-neck radiotherapy.
    Wang T; Ghavidel BB; Beitler JJ; Tang X; Lei Y; Curran WJ; Liu T; Yang X
    J Appl Clin Med Phys; 2019 Feb; 20(2):121-128. PubMed ID: 30693665
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prospective randomized double-blind study of atlas-based organ-at-risk autosegmentation-assisted radiation planning in head and neck cancer.
    Walker GV; Awan M; Tao R; Koay EJ; Boehling NS; Grant JD; Sittig DF; Gunn GB; Garden AS; Phan J; Morrison WH; Rosenthal DI; Mohamed AS; Fuller CD
    Radiother Oncol; 2014 Sep; 112(3):321-5. PubMed ID: 25216572
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks.
    Ibragimov B; Xing L
    Med Phys; 2017 Feb; 44(2):547-557. PubMed ID: 28205307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Geometric and dosimetric evaluations of atlas-based segmentation methods of MR images in the head and neck region.
    Kieselmann JP; Kamerling CP; Burgos N; Menten MJ; Fuller CD; Nill S; Cardoso MJ; Oelfke U
    Phys Med Biol; 2018 Jul; 63(14):145007. PubMed ID: 29882749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Clinical validation of atlas-based auto-segmentation of multiple target volumes and normal tissue (swallowing/mastication) structures in the head and neck.
    Teguh DN; Levendag PC; Voet PW; Al-Mamgani A; Han X; Wolf TK; Hibbard LS; Nowak P; Akhiat H; Dirkx ML; Heijmen BJ; Hoogeman MS
    Int J Radiat Oncol Biol Phys; 2011 Nov; 81(4):950-7. PubMed ID: 20932664
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accuracy of software-assisted contour propagation from planning CT to cone beam CT in head and neck radiotherapy.
    Hvid CA; Elstrøm UV; Jensen K; Alber M; Grau C
    Acta Oncol; 2016 Nov; 55(11):1324-1330. PubMed ID: 27556786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comprehensive evaluation of ten deformable image registration algorithms for contour propagation between CT and cone-beam CT images in adaptive head & neck radiotherapy.
    Li X; Zhang Y; Shi Y; Wu S; Xiao Y; Gu X; Zhen X; Zhou L
    PLoS One; 2017; 12(4):e0175906. PubMed ID: 28414799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of automatic atlas-based lymph node segmentation for head-and-neck cancer.
    Stapleford LJ; Lawson JD; Perkins C; Edelman S; Davis L; McDonald MW; Waller A; Schreibmann E; Fox T
    Int J Radiat Oncol Biol Phys; 2010 Jul; 77(3):959-66. PubMed ID: 20231069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation of clinical acceptability of an atlas-based segmentation algorithm for the delineation of organs at risk in head and neck cancer.
    Hoang Duc AK; Eminowicz G; Mendes R; Wong SL; McClelland J; Modat M; Cardoso MJ; Mendelson AF; Veiga C; Kadir T; D'Souza D; Ourselin S
    Med Phys; 2015 Sep; 42(9):5027-34. PubMed ID: 26328953
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deformable image registration and interobserver variation in contour propagation for radiation therapy planning.
    Riegel AC; Antone JG; Zhang H; Jain P; Raince J; Rea A; Bergamo AM; Kapur A; Potters L
    J Appl Clin Med Phys; 2016 May; 17(3):347-357. PubMed ID: 27167289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The use of deformable image registration to integrate diagnostic MRI into the radiotherapy planning pathway for head and neck cancer.
    Chuter R; Prestwich R; Bird D; Scarsbrook A; Sykes J; Wilson D; Speight R
    Radiother Oncol; 2017 Feb; 122(2):229-235. PubMed ID: 27497803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks.
    Tong N; Gou S; Yang S; Ruan D; Sheng K
    Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Contouring and dose calculation in head and neck cancer radiotherapy after reduction of metal artifacts in CT images.
    Hansen CR; Christiansen RL; Lorenzen EL; Bertelsen AS; Asmussen JT; Gyldenkerne N; Eriksen JG; Johansen J; Brink C
    Acta Oncol; 2017 Jun; 56(6):874-878. PubMed ID: 28464749
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of magnetic resonance imaging and CT scan-based delineation of target volumes and organs at risk in the radiation treatment planning of head and neck malignancies.
    R L; Gupta M; Gupta S; Joseph D; Krishnan AS; Sharma P; Verma S; Mandal S; R S N
    J Med Imaging Radiat Sci; 2023 Sep; 54(3):503-510. PubMed ID: 37164871
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Daily kV cone-beam CT and deformable image registration as a method for studying dosimetric consequences of anatomic changes in adaptive IMRT of head and neck cancer.
    Elstrøm UV; Wysocka BA; Muren LP; Petersen JB; Grau C
    Acta Oncol; 2010 Oct; 49(7):1101-8. PubMed ID: 20831502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intensity modulated arc therapy implementation in a three phase adaptive (18)F-FDG-PET voxel intensity-based planning strategy for head-and-neck cancer.
    Berwouts D; Olteanu LA; Speleers B; Duprez F; Madani I; Vercauteren T; De Neve W; De Gersem W
    Radiat Oncol; 2016 Apr; 11():52. PubMed ID: 27039294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Adaptive planning in intensity-modulated radiation therapy for head and neck cancers: single-institution experience and clinical implications.
    Ahn PH; Chen CC; Ahn AI; Hong L; Scripes PG; Shen J; Lee CC; Miller E; Kalnicki S; Garg MK
    Int J Radiat Oncol Biol Phys; 2011 Jul; 80(3):677-85. PubMed ID: 20619553
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Atlas-guided generation of pseudo-CT images for MRI-only and hybrid PET-MRI-guided radiotherapy treatment planning.
    Arabi H; Koutsouvelis N; Rouzaud M; Miralbell R; Zaidi H
    Phys Med Biol; 2016 Sep; 61(17):6531-52. PubMed ID: 27524504
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.