These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 2745550)

  • 41. Mutant strains of Chlamydomonas reinhardtii that move backwards only.
    Segal RA; Huang B; Ramanis Z; Luck DJ
    J Cell Biol; 1984 Jun; 98(6):2026-34. PubMed ID: 6725408
    [TBL] [Abstract][Full Text] [Related]  

  • 42. PF20 gene product contains WD repeats and localizes to the intermicrotubule bridges in Chlamydomonas flagella.
    Smith EF; Lefebvre PA
    Mol Biol Cell; 1997 Mar; 8(3):455-67. PubMed ID: 9188098
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Two types of Chlamydomonas flagellar mutants missing different components of inner-arm dynein.
    Kamiya R; Kurimoto E; Muto E
    J Cell Biol; 1991 Feb; 112(3):441-7. PubMed ID: 1825085
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A gene essential for viability and flagellar regeneration maps to the uni linkage group of Chlamydomonas reinhardtii.
    Larkin JC; Lefebvre PA; Silflow CD
    Curr Genet; 1989 May; 15(5):377-84. PubMed ID: 2791033
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Molecular cloning and characterization of a radial spoke head protein of sea urchin sperm axonemes: involvement of the protein in the regulation of sperm motility.
    Gingras D; White D; Garin J; Cosson J; Huitorel P; Zingg H; Cibert C; Gagnon C
    Mol Biol Cell; 1998 Feb; 9(2):513-22. PubMed ID: 9450971
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Flagellar quiescence in Chlamydomonas: Characterization and defective quiescence in cells carrying sup-pf-1 and sup-pf-2 outer dynein arm mutations.
    Mitchell BF; Grulich LE; Mader MM
    Cell Motil Cytoskeleton; 2004 Mar; 57(3):186-96. PubMed ID: 14743351
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Genetic dissection of the central pair microtubules of the flagella of Chlamydomonas reinhardtii.
    Dutcher SK; Huang B; Luck DJ
    J Cell Biol; 1984 Jan; 98(1):229-36. PubMed ID: 6707088
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Rib43a protein is associated with forming the specialized protofilament ribbons of flagellar microtubules in Chlamydomonas.
    Norrander JM; deCathelineau AM; Brown JA; Porter ME; Linck RW
    Mol Biol Cell; 2000 Jan; 11(1):201-15. PubMed ID: 10637302
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Kinesin-related proteins in eukaryotic flagella.
    Fox LA; Sawin KE; Sale WS
    J Cell Sci; 1994 Jun; 107 ( Pt 6)():1545-50. PubMed ID: 7962196
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella.
    Pazour GJ; Dickert BL; Vucica Y; Seeley ES; Rosenbaum JL; Witman GB; Cole DG
    J Cell Biol; 2000 Oct; 151(3):709-18. PubMed ID: 11062270
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Bending patterns of chlamydomonas flagella: III. A radial spoke head deficient mutant and a central pair deficient mutant.
    Brokaw CJ; Luck DJ
    Cell Motil; 1985; 5(3):195-208. PubMed ID: 4005942
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Two anti-radial spoke monoclonal antibodies inhibit Chlamydomonas axonemal motility by different mechanisms.
    White D; Aghigh S; Magder I; Cosson J; Huitorel P; Gagnon C
    J Biol Chem; 2005 Apr; 280(15):14803-10. PubMed ID: 15664983
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Defective flagellar assembly and length regulation in LF3 null mutants in Chlamydomonas.
    Tam LW; Dentler WL; Lefebvre PA
    J Cell Biol; 2003 Nov; 163(3):597-607. PubMed ID: 14610061
    [TBL] [Abstract][Full Text] [Related]  

  • 54. The Chlamydomonas MBO2 locus encodes a conserved coiled-coil protein important for flagellar waveform conversion.
    Tam LW; Lefebvre PA
    Cell Motil Cytoskeleton; 2002 Apr; 51(4):197-212. PubMed ID: 11977094
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Nickel and low CO₂-controlled motility in Chlamydomonas through complementation of a paralyzed flagella mutant with chemically regulated promoters.
    Ferrante P; Diener DR; Rosenbaum JL; Giuliano G
    BMC Plant Biol; 2011 Jan; 11():22. PubMed ID: 21266063
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nanometer scale vibration in mutant axonemes of Chlamydomonas.
    Yagi T; Kamimura S; Kamiya R
    Cell Motil Cytoskeleton; 1994; 29(2):177-85. PubMed ID: 7820867
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Isolation and characterization of cDNA clones encoding photosystem I subunits with molecular masses 11.0, 10.0 and 8.4 kDa from Chlamydomonas reinhardtii.
    Franzén LG; Frank G; Zuber H; Rochaix JD
    Mol Gen Genet; 1989 Oct; 219(1-2):137-44. PubMed ID: 2693938
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Synthesis, transport, and utilization of specific flagellar proteins during flagellar regeneration in Chlamydomonas.
    Remillard SP; Witman GB
    J Cell Biol; 1982 Jun; 93(3):615-31. PubMed ID: 7118994
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Localization of calmodulin and dynein light chain LC8 in flagellar radial spokes.
    Yang P; Diener DR; Rosenbaum JL; Sale WS
    J Cell Biol; 2001 Jun; 153(6):1315-26. PubMed ID: 11402073
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A motile Chlamydomonas flagellar mutant that lacks outer dynein arms.
    Mitchell DR; Rosenbaum JL
    J Cell Biol; 1985 Apr; 100(4):1228-34. PubMed ID: 3156867
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.