BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 27455672)

  • 1. Sub-Surface and Bulk Creep Behaviour of Polyurethane/Clay Nanocomposites.
    Jin J; Yusoh K; Zhang HX; Song M
    J Nanosci Nanotechnol; 2016 Mar; 16(3):2576-81. PubMed ID: 27455672
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A study of energy dissipation in exfoliated polyurethane/organoclay nanocomposites.
    Jin J; Chen L; Song M
    J Nanosci Nanotechnol; 2009 Nov; 9(11):6453-9. PubMed ID: 19908548
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Millable polyurethane/organoclay nanocomposites: preparation, characterization, and properties.
    Siliani M; López-Manchado MA; Valentín JL; Arroyo M; Marcos A; Khayet M; Villaluenga JP
    J Nanosci Nanotechnol; 2007 Feb; 7(2):634-40. PubMed ID: 17450806
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and properties of vermiculite-reinforced polyurethane nanocomposites.
    Qian Y; Lindsay CI; Macosko C; Stein A
    ACS Appl Mater Interfaces; 2011 Sep; 3(9):3709-17. PubMed ID: 21854000
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Functional copolymer/organo-MMT nanoarchitectures. VI. Synthesis and characterization of novel nanocomposites by interlamellar controlled/living radical copolymerization via preintercalated RAFT-agent/organoclay complexes.
    Rzayev ZM; Söylemez AE
    J Nanosci Nanotechnol; 2011 Apr; 11(4):3523-32. PubMed ID: 21776733
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Polyol-assisted vermiculite dispersion in polyurethane nanocomposites.
    Park YT; Qian Y; Lindsay CI; Nijs C; Camargo RE; Stein A; Macosko CW
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):3054-62. PubMed ID: 23506456
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology development and stability of polypropylene/organoclay nanocomposites.
    Muksing N; Coiai S; Conzatti L; Passaglia E; Magaraphan R; Ciardelli F
    J Nanosci Nanotechnol; 2010 Sep; 10(9):5814-25. PubMed ID: 21133110
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of rheological properties of polypropylene/organoclay hybrid materials.
    Yu S; Liu S; Zhao J; Yong MS
    J Nanosci Nanotechnol; 2006 Dec; 6(12):3989-92. PubMed ID: 17256369
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A simple method to improve the clarity and rheological properties of polymer/clay nanocomposites by using fractionated clay particles.
    Cipriano BH; Kashiwagi T; Zhang X; Raghavan SR
    ACS Appl Mater Interfaces; 2009 Jan; 1(1):130-5. PubMed ID: 20355764
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystal form and phase structure of poly(vinylidene fluoride)/polyamide 11/clay nanocomposites by high-shear processing.
    Li Y; Iwakura Y; Shimizu H
    J Nanosci Nanotechnol; 2008 Apr; 8(4):1714-20. PubMed ID: 18572569
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In vitro biostability of poly(dimethyl siloxane/hexamethylene oxide)-based polyurethane/layered silicate nanocomposites.
    Andriani Y; Morrow IC; Taran E; Edwards GA; Schiller TL; Osman AF; Martin DJ
    Acta Biomater; 2013 Sep; 9(9):8308-17. PubMed ID: 23727246
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the influence of nanoparticles' shapes on the formation of poly(lactic acid) nanocomposites obtained employing the solution method.
    Brito LM; Tavares MI
    J Nanosci Nanotechnol; 2012 Jun; 12(6):4508-13. PubMed ID: 22905493
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of chitin-bentonite clay based polyurethane bio-nanocomposites.
    Zuber M; Zia KM; Mahboob S; Hassan M; Bhatti IA
    Int J Biol Macromol; 2010 Aug; 47(2):196-200. PubMed ID: 20438748
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural, morphological and thermal properties of nanocomposites poly(GMA)/clay prepared by ultrasound and in-situ polymerization.
    Cherifi Z; Boukoussa B; Zaoui A; Belbachir M; Meghabar R
    Ultrason Sonochem; 2018 Nov; 48():188-198. PubMed ID: 30080541
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyethylene organo-clay nanocomposites: the role of the interface chemistry on the extent of clay intercalation/exfoliation.
    Mainil M; Alexandre M; Monteverde F; Dubois P
    J Nanosci Nanotechnol; 2006 Feb; 6(2):337-44. PubMed ID: 16573030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel biobased nanocomposites from soybean oil and functionalized organoclay.
    Lu Y; Larock RC
    Biomacromolecules; 2006 Sep; 7(9):2692-700. PubMed ID: 16961334
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of reactive silicates on the structure/property relationships and cell response evaluation in polyurethane nanocomposites.
    Rueda L; Garcia I; Palomares T; Alonso-Varona A; Mondragon I; Corcuera M; Eceiza A
    J Biomed Mater Res A; 2011 Jun; 97(4):480-9. PubMed ID: 21495170
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fracture behavior of polypropylene/clay nanocomposites.
    Chen L; Wang K; Kotaki M; Hu C; He C
    J Nanosci Nanotechnol; 2006 Dec; 6(12):3969-72. PubMed ID: 17256364
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Special susceptive aqueous ammonia chemi-sensor: extended applications of novel UV-curable polyurethane-clay nanohybrid.
    Khan SB; Rahman MM; Jang ES; Akhtar K; Han H
    Talanta; 2011 May; 84(4):1005-10. PubMed ID: 21530772
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterization of Langmuir-Blodgett organoclay films using X-ray reflectivity and atomic force microscopy.
    Koo J; Park S; Satija S; Tikhonov A; Sokolov JC; Rafailovich MH; Koga T
    J Colloid Interface Sci; 2008 Feb; 318(1):103-9. PubMed ID: 17942107
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.