These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 27455753)

  • 21. Highly twisted double-helix carbon nanotube yarns.
    Shang Y; Li Y; He X; Du S; Zhang L; Shi E; Wu S; Li Z; Li P; Wei J; Wang K; Zhu H; Wu D; Cao A
    ACS Nano; 2013 Feb; 7(2):1446-53. PubMed ID: 23289799
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Electrically, chemically, and photonically powered torsional and tensile actuation of hybrid carbon nanotube yarn muscles.
    Lima MD; Li N; Jung de Andrade M; Fang S; Oh J; Spinks GM; Kozlov ME; Haines CS; Suh D; Foroughi J; Kim SJ; Chen Y; Ware T; Shin MK; Machado LD; Fonseca AF; Madden JD; Voit WE; Galvão DS; Baughman RH
    Science; 2012 Nov; 338(6109):928-32. PubMed ID: 23161994
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In situ observation of carbon nanotube yarn during voltage application.
    Tokunaga T; Hayashi Y; Iijima T; Uesugi Y; Unten M; Sasaki K; Yamamoto T
    Micron; 2015 Jul; 74():30-4. PubMed ID: 25939086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Comprehensive Characterization of Structural, Electrical, and Mechanical Properties of Carbon Nanotube Yarns Produced by Various Spinning Methods.
    Watanabe T; Yamazaki S; Yamashita S; Inaba T; Muroga S; Morimoto T; Kobashi K; Okazaki T
    Nanomaterials (Basel); 2022 Feb; 12(4):. PubMed ID: 35214922
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemical method for improving both the electrical conductivity and mechanical properties of carbon nanotube yarn via intramolecular cross-dehydrogenative coupling.
    Choi YM; Choo H; Yeo H; You NH; Lee DS; Ku BC; Kim HC; Bong PH; Jeong Y; Goh M
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):7726-30. PubMed ID: 23947825
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Field emission behavior of carbon nanotube yarn for micro-resolution X-ray tube cathode.
    Hwang JW; Mo CB; Jung HK; Ryu S; Hong SH
    J Nanosci Nanotechnol; 2013 Nov; 13(11):7386-90. PubMed ID: 24245260
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Carbon Nanotube Yarn for Fiber-Shaped Electrical Sensors, Actuators, and Energy Storage for Smart Systems.
    Jang Y; Kim SM; Spinks GM; Kim SJ
    Adv Mater; 2020 Feb; 32(5):e1902670. PubMed ID: 31403227
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Cross-links in carbon nanotube assembly introduced by using polyacrylonitrile as precursor.
    Cui Y; Zhang M
    ACS Appl Mater Interfaces; 2013 Aug; 5(16):8173-8. PubMed ID: 23901778
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Overtwisted, resolvable carbon nanotube yarn entanglement as strain sensors and rotational actuators.
    Li Y; Shang Y; He X; Peng Q; Du S; Shi E; Wu S; Li Z; Li P; Cao A
    ACS Nano; 2013 Sep; 7(9):8128-35. PubMed ID: 23962111
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Scale and twist effects on the strength of nanostructured yarns and reinforced composites.
    Beyerlein IJ; Porwal PK; Zhu YT; Hu K; Xu XF
    Nanotechnology; 2009 Dec; 20(48):485702. PubMed ID: 19880980
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigating the Suitability of Carbon Nanotube Reinforced Polymer in Transcatheter Valve Applications.
    Rozeik MM; Wheatley DJ; Gourlay T
    Cardiovasc Eng Technol; 2017 Sep; 8(3):357-367. PubMed ID: 28623503
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Room-Temperature Hydrogen-Gas Sensor Based on Carbon Nanotube Yarn.
    Han M; Kim JK; Lee J; An HK; Yun JP; Kang SW; Jung D
    J Nanosci Nanotechnol; 2020 Jul; 20(7):4011-4014. PubMed ID: 31968415
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-performance two-ply yarn supercapacitors based on carbon nanotube yarns dotted with Co3 O4 and NiO nanoparticles.
    Su F; Lv X; Miao M
    Small; 2015 Feb; 11(7):854-61. PubMed ID: 25277293
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Carbon nanotube and graphene multiple-thread yarns.
    Zhong X; Wang R; Yangyang W; Yali L
    Nanoscale; 2013 Feb; 5(3):1183-7. PubMed ID: 23299393
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cross-linking multiwall carbon nanotubes using PFPA to build robust, flexible and highly aligned large-scale sheets and yarns.
    Inoue Y; Nakamura K; Miyasaka Y; Nakano T; Kletetschka G
    Nanotechnology; 2016 Mar; 27(11):115701. PubMed ID: 26871413
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Superaligned carbon nanotube arrays, films, and yarns: a road to applications.
    Jiang K; Wang J; Li Q; Liu L; Li C; Fan S
    Adv Mater; 2011 Mar; 23(9):1154-61. PubMed ID: 21465707
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biomechanical fatigue analysis of an advanced new carbon fiber/flax/epoxy plate for bone fracture repair using conventional fatigue tests and thermography.
    Bagheri ZS; El Sawi I; Bougherara H; Zdero R
    J Mech Behav Biomed Mater; 2014 Jul; 35():27-38. PubMed ID: 24727574
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Superstrong Carbon Nanotube Yarns by Developing Multiscale Bundle Structures on the Direct Spin-Line without Post-Treatment.
    Cho YS; Lee JW; Kim J; Jung Y; Yang SJ; Park CR
    Adv Sci (Weinh); 2023 Jan; 10(2):e2204250. PubMed ID: 36404109
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Tensile tests on individual single-walled carbon nanotubes: linking nanotube strength with its defects.
    Wang MS; Golberg D; Bando Y
    Adv Mater; 2010 Sep; 22(36):4071-5. PubMed ID: 20717989
    [No Abstract]   [Full Text] [Related]  

  • 40. Electromechanical actuation of macroscopic carbon nanotube structures: mats and aligned ribbons.
    Suppiger D; Busato S; Ermanni P; Motta M; Windle A
    Phys Chem Chem Phys; 2009 Jul; 11(25):5180-5. PubMed ID: 19562152
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.