BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

204 related articles for article (PubMed ID: 27455890)

  • 1. Effects of Lead and Mercury on Sulfate-Reducing Bacterial Activity in a Biological Process for Flue Gas Desulfurization Wastewater Treatment.
    Zhang L; Lin X; Wang J; Jiang F; Wei L; Chen G; Hao X
    Sci Rep; 2016 Jul; 6():30455. PubMed ID: 27455890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. System evaluation and microbial analysis of a sulfur cycle-based wastewater treatment process for Co-treatment of simple wet flue gas desulfurization wastes with freshwater sewage.
    Qian J; Liu R; Wei L; Lu H; Chen GH
    Water Res; 2015 Sep; 80():189-99. PubMed ID: 26001823
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Roles of sulfite and internal recirculation on organic compound removal and the microbial community structure of a sulfur cycle-driven biological wastewater treatment process.
    Qian J; Zhang M; Niu J; Fu X; Pei X; Chang X; Wei L; Liu R; Chen GH; Jiang F
    Chemosphere; 2019 Jul; 226():825-833. PubMed ID: 30974375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodesulfurization of flue gases and other sulfate/sulfite waste streams using immobilized mixed sulfate-reducing bacteria.
    Selvaraj PT; Little MH; Kaufman EN
    Biotechnol Prog; 1997; 13(5):583-9. PubMed ID: 9376112
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Free sulfurous acid (FSA) inhibition of biological thiosulfate reduction (BTR) in the sulfur cycle-driven wastewater treatment process.
    Qian J; Wang L; Wu Y; Bond PL; Zhang Y; Chang X; Deng B; Wei L; Li Q; Wang Q
    Chemosphere; 2017 Jun; 176():212-220. PubMed ID: 28264778
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Industrial flue gas desulfurization waste may offer an opportunity to facilitate SANI® application for significant sludge minimization in freshwater wastewater treatment.
    Qian J; Jiang F; Chui HK; van Loosdrecht MC; Chen GH
    Water Sci Technol; 2013; 67(12):2822-6. PubMed ID: 23787323
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel approach to realize SANI process in freshwater sewage treatment--Use of wet flue gas desulfurization waste streams as sulfur source.
    Jiang F; Zhang L; Peng GL; Liang SY; Qian J; Wei L; Chen GH
    Water Res; 2013 Oct; 47(15):5773-82. PubMed ID: 23886546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lead removal and toxicity reduction from industrial wastewater through biological sulfate reduction process.
    Teekayuttasakul P; Annachhatre AP
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2008 Oct; 43(12):1424-30. PubMed ID: 18780220
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of sulfate reducing cell suspension bioreactors for the treatment of SO2 rich flue gases.
    Lens PN; Gastesi R; Lettinga G
    Biodegradation; 2003 Jun; 14(3):229-40. PubMed ID: 12889613
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Study on the treatment of sulfite wastewater by Desulfovibrio.
    Zhao B; Sun H; Jiang P; Rizwan M; Zhou M; Zhou X
    Bioprocess Biosyst Eng; 2023 Sep; 46(9):1265-1278. PubMed ID: 37418179
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of electron acceptors on sulphate reduction activity in activated sludge processes.
    Rubio-Rincón F; Lopez-Vazquez C; Welles L; van den Brand T; Abbas B; van Loosdrecht M; Brdjanovic D
    Appl Microbiol Biotechnol; 2017 Aug; 101(15):6229-6240. PubMed ID: 28547567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sulfate-reducing bacteria decreases fractional pressure of H
    Hu H; Liu S; Li D; Zhou A; Cai W; Luo J; Liu Z; He Z; Yue X; Liu W
    Sci Total Environ; 2024 Jun; 931():172898. PubMed ID: 38697543
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Microbial conversion of sulfur dioxide in flue gas to sulfide using bulk drug industry wastewater as an organic source by mixed cultures of sulfate reducing bacteria.
    Rao AG; Ravichandra P; Joseph J; Jetty A; Sarma PN
    J Hazard Mater; 2007 Aug; 147(3):718-25. PubMed ID: 17324510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Realizing high-rate sulfur reduction under sulfate-rich conditions in a biological sulfide production system to treat metal-laden wastewater deficient in organic matter.
    Sun R; Zhang L; Zhang Z; Chen GH; Jiang F
    Water Res; 2018 Mar; 131():239-245. PubMed ID: 29291485
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recycling flue gas desulphurization (FGD) gypsum for removal of Pb(II) and Cd(II) from wastewater.
    Yan Y; Li Q; Sun X; Ren Z; He F; Wang Y; Wang L
    J Colloid Interface Sci; 2015 Nov; 457():86-95. PubMed ID: 26162902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating enhanced sulfate reduction and optimized volatile fatty acids (VFA) composition in anaerobic reactor by Fe (III) addition.
    Liu Y; Zhang Y; Ni BJ
    Environ Sci Technol; 2015 Feb; 49(4):2123-31. PubMed ID: 25606811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Optimization of sulfide production by an indigenous consortium of sulfate-reducing bacteria for the treatment of lead-contaminated wastewater.
    Kieu TQ; Nguyen TY; Dang TY; Nguyen TB; Vuong TN; Horn H
    Bioprocess Biosyst Eng; 2015 Oct; 38(10):2003-11. PubMed ID: 26251206
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A novel biological sulfur reduction process for mercury-contaminated wastewater treatment.
    Wang J; Hong Y; Lin Z; Zhu C; Da J; Chen G; Jiang F
    Water Res; 2019 Sep; 160():288-295. PubMed ID: 31154126
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Anaerobic treatment for C and S removal in "zero-discharge" paper mills: effects of process design on S removal efficiencies.
    van Lier JB; Lens PN; Pol LW
    Water Sci Technol; 2001; 44(4):189-95. PubMed ID: 11575084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.