BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 27456022)

  • 1. A Mosaicking Approach for In Vivo Thickness Mapping of the Human Tympanic Membrane Using Low Coherence Interferometry.
    Pande P; Shelton RL; Monroy GL; Nolan RM; Boppart SA
    J Assoc Res Otolaryngol; 2016 Oct; 17(5):403-16. PubMed ID: 27456022
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Optical Coherence Tomography of the Tympanic Membrane and Middle Ear: A Review.
    Tan HEI; Santa Maria PL; Wijesinghe P; Francis Kennedy B; Allardyce BJ; Eikelboom RH; Atlas MD; Dilley RJ
    Otolaryngol Head Neck Surg; 2018 Sep; 159(3):424-438. PubMed ID: 29787354
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optical assessment of the in vivo tympanic membrane status using a handheld optical coherence tomography-based otoscope.
    Park K; Cho NH; Jeon M; Lee SH; Jang JH; Boppart SA; Jung W; Kim J
    Acta Otolaryngol; 2018 Apr; 138(4):367-374. PubMed ID: 29125012
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging the human tympanic membrane using optical coherence tomography in vivo.
    Djalilian HR; Ridgway J; Tam M; Sepehr A; Chen Z; Wong BJ
    Otol Neurotol; 2008 Dec; 29(8):1091-4. PubMed ID: 18957904
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pneumatic low-coherence interferometry otoscope to quantify tympanic membrane mobility and middle ear pressure.
    Won J; Monroy GL; Huang PC; Dsouza R; Hill MC; Novak MA; Porter RG; Chaney E; Barkalifa R; Boppart SA
    Biomed Opt Express; 2018 Feb; 9(2):397-409. PubMed ID: 29552381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. In vivo detection of nanometer-scale structural changes of the human tympanic membrane in otitis media.
    Dsouza R; Won J; Monroy GL; Hill MC; Porter RG; Novak MA; Boppart SA
    Sci Rep; 2018 Jun; 8(1):8777. PubMed ID: 29884809
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In vivo dynamic characterization of the human tympanic membrane using pneumatic optical coherence tomography.
    Won J; Porter RG; Novak MA; Youakim J; Sum A; Barkalifa R; Aksamitiene E; Zhang A; Nolan R; Shelton R; Boppart SA
    J Biophotonics; 2021 Apr; 14(4):e202000215. PubMed ID: 33439538
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Remote paediatric ear examination comparing video-otoscopy and still otoscopy clinician rated outcomes.
    Quick ME; Brennan-Jones CG; Kuthubutheen J
    Int J Pediatr Otorhinolaryngol; 2024 Feb; 177():111871. PubMed ID: 38266378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Real-time automated thickness measurement of the in vivo human tympanic membrane using optical coherence tomography.
    Hubler Z; Shemonski ND; Shelton RL; Monroy GL; Nolan RM; Boppart SA
    Quant Imaging Med Surg; 2015 Feb; 5(1):69-77. PubMed ID: 25694956
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative Pneumatic Otoscopy Using a Light-Based Ranging Technique.
    Shelton RL; Nolan RM; Monroy GL; Pande P; Novak MA; Porter RG; Boppart SA
    J Assoc Res Otolaryngol; 2017 Aug; 18(4):555-568. PubMed ID: 28653118
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rabbit tympanic membrane thickness distribution obtained via optical coherence tomography.
    Livens P; Dirckx JJJ
    Hear Res; 2023 Mar; 429():108701. PubMed ID: 36680871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Remote evaluation of video-otoscopy recordings in an unselected pediatric population with an otitis media scale.
    Lundberg T; Biagio L; Laurent C; Sandström H; Swanepoel de W
    Int J Pediatr Otorhinolaryngol; 2014 Sep; 78(9):1489-95. PubMed ID: 25017799
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Application of Multispectral Imaging in the Human Tympanic Membrane.
    Tran Van T; Lu Thi Thao M; Bui Mai Quynh L; Phan Ngoc Khuong C; Huynh Quang L
    J Healthc Eng; 2020; 2020():6219845. PubMed ID: 33014321
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Vivo Thickness of the Healthy Tympanic Membrane Determined by Optical Coherence Tomography.
    Morgenstern J; Kreusch T; Golde J; Steuer S; Ossmann S; Kirsten L; Walther J; Zahnert T; Koch E; Neudert M
    Otol Neurotol; 2024 Mar; 45(3):e256-e262. PubMed ID: 38361307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Video pneumatic otoscopy for the diagnosis of conductive hearing loss with normal tympanic membranes.
    Lee JK; Cho YS; Ko MH; Lee WY; Kim HJ; Kim E; Chung WH; Hong SH
    Otolaryngol Head Neck Surg; 2011 Jan; 144(1):67-72. PubMed ID: 21493390
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Assessment of middle ear structure and function with optical coherence tomography.
    Meenderink SWF; Warn M; Anchondo LM; Liu Y; Jung TTK; Dong W
    Acta Otolaryngol; 2023; 143(7):558-562. PubMed ID: 37366291
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging Technologies for the Diagnosis of Otitis Media.
    Marom T; Kraus O; Habashi N; Tamir SO
    Otolaryngol Head Neck Surg; 2019 Mar; 160(3):447-456. PubMed ID: 30396324
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endoscopic optical coherence tomography with wide field-of-view for the morphological and functional assessment of the human tympanic membrane.
    Kirsten L; Schindler M; Morgenstern J; Erkkilä MT; Golde J; Walther J; Rottmann P; Kemper M; Bornitz M; Neudert M; Zahnert T; Koch E
    J Biomed Opt; 2018 Dec; 24(3):1-11. PubMed ID: 30516037
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemorrhage within the tympanic membrane without perforation.
    Kim CH; Shin JE
    J Otolaryngol Head Neck Surg; 2018 Nov; 47(1):66. PubMed ID: 30400952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Enhanced video images for tympanic membrane characterization.
    Cheng L; Liu J; Roehm CE; Valdez TA
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():4002-5. PubMed ID: 22255217
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.