BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

310 related articles for article (PubMed ID: 27456030)

  • 21. Pak1 and Pak2 mediate tumor cell invasion through distinct signaling mechanisms.
    Coniglio SJ; Zavarella S; Symons MH
    Mol Cell Biol; 2008 Jun; 28(12):4162-72. PubMed ID: 18411304
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Amplification of CCND1 and PAK1 as predictors of recurrence and tamoxifen resistance in postmenopausal breast cancer.
    Bostner J; Ahnström Waltersson M; Fornander T; Skoog L; Nordenskjöld B; Stål O
    Oncogene; 2007 Oct; 26(49):6997-7005. PubMed ID: 17486065
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioinformatics analysis of aggressive behavior of breast cancer via an integrated gene regulatory network.
    Yang X; Jia M; Li Z; Lu S; Qi X; Zhao B; Wang X; Rong Y; Shi J; Zhang Z; Xu W; Gao Y; Zhang S; Yu G
    J Cancer Res Ther; 2014; 10(4):1013-8. PubMed ID: 25579546
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Biochemical and structural characterization of the Pak1-LC8 interaction.
    Lightcap CM; Sun S; Lear JD; Rodeck U; Polenova T; Williams JC
    J Biol Chem; 2008 Oct; 283(40):27314-24. PubMed ID: 18650427
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Bioinformatics analysis of gene expression data for the identification of critical genes in breast invasive carcinoma.
    Li Y; Wang Y
    Mol Med Rep; 2017 Dec; 16(6):8657-8664. PubMed ID: 28990063
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Integrative Bioinformatics Analysis Reveals Potential Target Genes and TNFα Signaling Inhibition by Brazilin in Metastatic Breast Cancer Cells.
    Hermawan A; Putri H
    Asian Pac J Cancer Prev; 2020 Sep; 21(9):2751-2762. PubMed ID: 32986377
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular mechanisms associated with breast cancer based on integrated gene expression profiling by bioinformatics analysis.
    Wu D; Han B; Guo L; Fan Z
    J Obstet Gynaecol; 2016 Jul; 36(5):615-21. PubMed ID: 26804550
    [TBL] [Abstract][Full Text] [Related]  

  • 28. STAT3 interacts with Skp2/p27/p21 pathway to regulate the motility and invasion of gastric cancer cells.
    Wei Z; Jiang X; Qiao H; Zhai B; Zhang L; Zhang Q; Wu Y; Jiang H; Sun X
    Cell Signal; 2013 Apr; 25(4):931-8. PubMed ID: 23333463
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synapses of amphids defective (SAD-A) kinase promotes glucose-stimulated insulin secretion through activation of p21-activated kinase (PAK1) in pancreatic β-Cells.
    Nie J; Sun C; Faruque O; Ye G; Li J; Liang Q; Chang Z; Yang W; Han X; Shi Y
    J Biol Chem; 2012 Jul; 287(31):26435-44. PubMed ID: 22669945
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Feature genes in metastatic breast cancer identified by MetaDE and SVM classifier methods.
    Tuo Y; An N; Zhang M
    Mol Med Rep; 2018 Mar; 17(3):4281-4290. PubMed ID: 29328377
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Mixed lineage kinase 3 promotes breast tumorigenesis via phosphorylation and activation of p21-activated kinase 1.
    Das S; Nair RS; Mishra R; Sondarva G; Viswakarma N; Abdelkarim H; Gaponenko V; Rana B; Rana A
    Oncogene; 2019 May; 38(19):3569-3584. PubMed ID: 30664689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Global characterization of signalling networks associated with tamoxifen resistance in breast cancer.
    Browne BC; Hochgräfe F; Wu J; Millar EK; Barraclough J; Stone A; McCloy RA; Lee CS; Roberts C; Ali NA; Boulghourjian A; Schmich F; Linding R; Farrow L; Gee JM; Nicholson RI; O'Toole SA; Sutherland RL; Musgrove EA; Butt AJ; Daly RJ
    FEBS J; 2013 Nov; 280(21):5237-57. PubMed ID: 23876235
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Phosphorylation of tyrosine 285 of PAK1 facilitates βPIX/GIT1 binding and adhesion turnover.
    Hammer A; Oladimeji P; De Las Casas LE; Diakonova M
    FASEB J; 2015 Mar; 29(3):943-59. PubMed ID: 25466889
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Switching of the substrate specificity of protein tyrosine phosphatase N12 by cyclin-dependent kinase 2 phosphorylation orchestrating 2 oncogenic pathways.
    Li H; Yang D; Ning S; Xu Y; Yang F; Yin R; Feng T; Han S; Guo L; Zhang P; Qu W; Guo R; Song C; Xiao P; Zhou C; Xu Z; Sun JP; Yu X
    FASEB J; 2018 Jan; 32(1):73-82. PubMed ID: 28842430
    [TBL] [Abstract][Full Text] [Related]  

  • 35. MicroRNA-7, a homeobox D10 target, inhibits p21-activated kinase 1 and regulates its functions.
    Reddy SD; Ohshiro K; Rayala SK; Kumar R
    Cancer Res; 2008 Oct; 68(20):8195-200. PubMed ID: 18922890
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential role for PAK1 and PAK4 during the invadopodia lifecycle.
    Nicholas NS; Pipili A; Lesjak MS; Wells CM
    Small GTPases; 2019 Jul; 10(4):289-295. PubMed ID: 28301299
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Integrated bioinformatics analysis reveals novel key biomarkers and potential candidate small molecule drugs in gestational diabetes mellitus.
    Alur V; Raju V; Vastrad B; Tengli A; Vastrad C; Kotturshetti S
    Biosci Rep; 2021 May; 41(5):. PubMed ID: 33890634
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effects of p21-activated kinase 1 inhibition on 11q13-amplified ovarian cancer cells.
    Prudnikova TY; Villamar-Cruz O; Rawat SJ; Cai KQ; Chernoff J
    Oncogene; 2016 Apr; 35(17):2178-85. PubMed ID: 26257058
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Rac1/PAK1 cascade controls β-catenin activation in colon cancer cells.
    Zhu G; Wang Y; Huang B; Liang J; Ding Y; Xu A; Wu W
    Oncogene; 2012 Feb; 31(8):1001-12. PubMed ID: 21822311
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Identification of Pak1 inhibitors using water thermodynamic analysis.
    Biswal J; Jayaprakash P; Suresh Kumar R; Venkatraman G; Poopandi S; Rangasamy R; Jeyaraman J
    J Biomol Struct Dyn; 2020 Jan; 38(1):13-31. PubMed ID: 30661460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.