BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

484 related articles for article (PubMed ID: 27456220)

  • 1. Loss of malic enzymes leads to metabolic imbalance and altered levels of trehalose and putrescine in the bacterium Sinorhizobium meliloti.
    Zhang Y; Smallbone LA; diCenzo GC; Morton R; Finan TM
    BMC Microbiol; 2016 Jul; 16(1):163. PubMed ID: 27456220
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Malic enzyme cofactor and domain requirements for symbiotic N2 fixation by Sinorhizobium meliloti.
    Mitsch MJ; Cowie A; Finan TM
    J Bacteriol; 2007 Jan; 189(1):160-8. PubMed ID: 17071765
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Properties of NAD(+)- and NADP(+)-dependent malic enzymes of Rhizobium (Sinorhizobium) meliloti and differential expression of their genes in nitrogen-fixing bacteroids.
    Driscoll BT; Finan TM
    Microbiology (Reading); 1997 Feb; 143 ( Pt 2)():489-498. PubMed ID: 9043124
    [TBL] [Abstract][Full Text] [Related]  

  • 4. NAD(P)+-malic enzyme mutants of Sinorhizobium sp. strain NGR234, but not Azorhizobium caulinodans ORS571, maintain symbiotic N2 fixation capabilities.
    Zhang Y; Aono T; Poole P; Finan TM
    Appl Environ Microbiol; 2012 Apr; 78(8):2803-12. PubMed ID: 22307295
    [TBL] [Abstract][Full Text] [Related]  

  • 5. NADP+ -dependent malic enzyme of Rhizobium meliloti.
    Driscoll BT; Finan TM
    J Bacteriol; 1996 Apr; 178(8):2224-31. PubMed ID: 8636022
    [TBL] [Abstract][Full Text] [Related]  

  • 6. NAD(+)-dependent malic enzyme of Rhizobium meliloti is required for symbiotic nitrogen fixation.
    Driscoll BT; Finan TM
    Mol Microbiol; 1993 Mar; 7(6):865-73. PubMed ID: 8387144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Succinate Transport Is Not Essential for Symbiotic Nitrogen Fixation by Sinorhizobium meliloti or Rhizobium leguminosarum.
    Mitsch MJ; diCenzo GC; Cowie A; Finan TM
    Appl Environ Microbiol; 2018 Jan; 84(1):. PubMed ID: 28916561
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Pyruvate is synthesized by two pathways in pea bacteroids with different efficiencies for nitrogen fixation.
    Mulley G; Lopez-Gomez M; Zhang Y; Terpolilli J; Prell J; Finan T; Poole P
    J Bacteriol; 2010 Oct; 192(19):4944-53. PubMed ID: 20675477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chimeric structure of the NAD(P)+- and NADP+-dependent malic enzymes of Rhizobium (Sinorhizobium) meliloti.
    Mitsch MJ; Voegele RT; Cowie A; Osteras M; Finan TM
    J Biol Chem; 1998 Apr; 273(15):9330-6. PubMed ID: 9535928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Membrane enzymes associated with the dissimilation of some citric acid cycle substrates and production of extracellular oxidation products in chemostat cultures of Pseudomonas fluorescens.
    Lee WS; Cooper JK; Lynch WH
    Can J Microbiol; 1984 Mar; 30(3):396-405. PubMed ID: 6426768
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of trehalose transport and utilization in Sinorhizobium meliloti--alfalfa interactions.
    Jensen JB; Ampomah OY; Darrah R; Peters NK; Bhuvaneswari TV
    Mol Plant Microbe Interact; 2005 Jul; 18(7):694-702. PubMed ID: 16042015
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Insertion of transposon Tn5tac1 in the Sinorhizobium meliloti malate dehydrogenase (mdh) gene results in conditional polar effects on downstream TCA cycle genes.
    Dymov SI; Meek DJ; Steven B; Driscoll BT
    Mol Plant Microbe Interact; 2004 Dec; 17(12):1318-27. PubMed ID: 15597737
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of two members of a novel malic enzyme class.
    Voegele RT; Mitsch MJ; Finan TM
    Biochim Biophys Acta; 1999 Jul; 1432(2):275-85. PubMed ID: 10407149
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Contributions of Sinorhizobium meliloti Transcriptional Regulator DksA to Bacterial Growth and Efficient Symbiosis with Medicago sativa.
    Wippel K; Long SR
    J Bacteriol; 2016 May; 198(9):1374-83. PubMed ID: 26883825
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased pyruvate orthophosphate dikinase activity results in an alternative gluconeogenic pathway in Rhizobium (Sinorhizobium) meliloti.
    Magne Ø; Driscoll BT; Finan TM
    Microbiology (Reading); 1997 May; 143 ( Pt 5)():1639-1648. PubMed ID: 9168612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of Mutations That Affect the Nonoxidative Pentose Phosphate Pathway in Sinorhizobium meliloti.
    Hawkins JP; Ordonez PA; Oresnik IJ
    J Bacteriol; 2018 Jan; 200(2):. PubMed ID: 29084855
    [No Abstract]   [Full Text] [Related]  

  • 17. The disruption of a gene encoding a putative arylesterase impairs pyruvate dehydrogenase complex activity and nitrogen fixation in Sinorhizobium meliloti.
    Soto MJ; Sanjuan J; Olivares J
    Mol Plant Microbe Interact; 2001 Jun; 14(6):811-5. PubMed ID: 11386377
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Reassessment of the transhydrogenase/malate shunt pathway in Clostridium thermocellum ATCC 27405 through kinetic characterization of malic enzyme and malate dehydrogenase.
    Taillefer M; Rydzak T; Levin DB; Oresnik IJ; Sparling R
    Appl Environ Microbiol; 2015 Apr; 81(7):2423-32. PubMed ID: 25616802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Directed evolution of thermotolerant malic enzyme for improved malate production.
    Morimoto Y; Honda K; Ye X; Okano K; Ohtake H
    J Biosci Bioeng; 2014 Feb; 117(2):147-152. PubMed ID: 23932397
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polyamines are required for normal growth in Sinorhizobium meliloti.
    Becerra-Rivera VA; Bergström E; Thomas-Oates J; Dunn MF
    Microbiology (Reading); 2018 Apr; 164(4):600-613. PubMed ID: 29619919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 25.