BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

401 related articles for article (PubMed ID: 27456270)

  • 1. Plasticity in respiratory motor neurons in response to reduced synaptic inputs: A form of homeostatic plasticity in respiratory control?
    Braegelmann KM; Streeter KA; Fields DP; Baker TL
    Exp Neurol; 2017 Jan; 287(Pt 2):225-234. PubMed ID: 27456270
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intermittent apnea elicits inactivity-induced phrenic motor facilitation via a retinoic acid- and protein synthesis-dependent pathway.
    Baertsch NA; Baker TL
    J Neurophysiol; 2017 Nov; 118(5):2702-2710. PubMed ID: 28814632
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Decreased spinal synaptic inputs to phrenic motor neurons elicit localized inactivity-induced phrenic motor facilitation.
    Streeter KA; Baker-Herman TL
    Exp Neurol; 2014 Jun; 256():46-56. PubMed ID: 24681155
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inactivity-induced phrenic motor facilitation requires PKCζ activity within phrenic motor neurons.
    Baertsch NA; Marciante AB; Mitchell GS; Baker TL
    J Neurophysiol; 2024 Jun; 131(6):1188-1199. PubMed ID: 38691529
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermittent reductions in respiratory neural activity elicit spinal TNF-α-independent, atypical PKC-dependent inactivity-induced phrenic motor facilitation.
    Baertsch NA; Baker-Herman TL
    Am J Physiol Regul Integr Comp Physiol; 2015 Apr; 308(8):R700-7. PubMed ID: 25673781
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Retinoic acid receptor alpha activation is necessary and sufficient for plasticity induced by recurrent central apnea.
    Braegelmann KM; Meza A; Agbeh AE; Fields DP; Baker TL
    J Appl Physiol (1985); 2021 Mar; 130(3):836-845. PubMed ID: 33411644
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Spinal atypical protein kinase C activity is necessary to stabilize inactivity-induced phrenic motor facilitation.
    Strey KA; Nichols NL; Baertsch NA; Broytman O; Baker-Herman TL
    J Neurosci; 2012 Nov; 32(46):16510-20. PubMed ID: 23152633
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Reduced respiratory neural activity elicits a long-lasting decrease in the CO
    Baertsch NA; Baker TL
    Exp Neurol; 2017 Jan; 287(Pt 2):235-242. PubMed ID: 27474512
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Spinal NMDA receptor activation constrains inactivity-induced phrenic motor facilitation in Charles River Sprague-Dawley rats.
    Streeter KA; Baker-Herman TL
    J Appl Physiol (1985); 2014 Oct; 117(7):682-93. PubMed ID: 25103979
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Competing mechanisms of plasticity impair compensatory responses to repetitive apnoea.
    Fields DP; Braegelmann KM; Meza AL; Mickelson CR; Gumnit MG; Baker TL
    J Physiol; 2019 Aug; 597(15):3951-3967. PubMed ID: 31280489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inactivity-induced phrenic and hypoglossal motor facilitation are differentially expressed following intermittent vs. sustained neural apnea.
    Baertsch NA; Baker-Herman TL
    J Appl Physiol (1985); 2013 May; 114(10):1388-95. PubMed ID: 23493368
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inactivity-induced respiratory plasticity: protecting the drive to breathe in disorders that reduce respiratory neural activity.
    Strey KA; Baertsch NA; Baker-Herman TL
    Respir Physiol Neurobiol; 2013 Nov; 189(2):384-94. PubMed ID: 23816599
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spinal TNF is necessary for inactivity-induced phrenic motor facilitation.
    Broytman O; Baertsch NA; Baker-Herman TL
    J Physiol; 2013 Nov; 591(22):5585-98. PubMed ID: 23878370
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Respiratory neuroplasticity: Mechanisms and translational implications of phrenic motor plasticity.
    Mitchell GS; Baker TL
    Handb Clin Neurol; 2022; 188():409-432. PubMed ID: 35965036
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phrenic-specific transcriptional programs shape respiratory motor output.
    Vagnozzi AN; Garg K; Dewitz C; Moore MT; Cregg JM; Jeannotte L; Zampieri N; Landmesser LT; Philippidou P
    Elife; 2020 Jan; 9():. PubMed ID: 31944180
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanisms of compensatory plasticity for respiratory motor neuron death.
    Seven YB; Mitchell GS
    Respir Physiol Neurobiol; 2019 Jul; 265():32-39. PubMed ID: 30625378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systemic inflammation suppresses spinal respiratory motor plasticity via mechanisms that require serine/threonine protein phosphatase activity.
    Tadjalli A; Seven YB; Perim RR; Mitchell GS
    J Neuroinflammation; 2021 Jan; 18(1):28. PubMed ID: 33468163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intermittent Hypoxia-Induced Spinal Inflammation Impairs Respiratory Motor Plasticity by a Spinal p38 MAP Kinase-Dependent Mechanism.
    Huxtable AG; Smith SM; Peterson TJ; Watters JJ; Mitchell GS
    J Neurosci; 2015 Apr; 35(17):6871-80. PubMed ID: 25926462
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic hypoxia does not induce synaptic plasticity in the phrenic nucleus.
    Castro-Moure F; Goshgarian HG
    Exp Neurol; 1997 Nov; 148(1):293-8. PubMed ID: 9398472
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aging enhances synaptic efficacy in a latent motor pathway following spinal cord hemisection in adult rats.
    Yu XJ; Goshgarian HG
    Exp Neurol; 1993 Jun; 121(2):231-8. PubMed ID: 8339773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.