These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

275 related articles for article (PubMed ID: 27456909)

  • 21. Design of clayware separator-electrode assembly for treatment of wastewater in microbial fuel cells.
    Chatterjee P; Ghangrekar MM
    Appl Biochem Biotechnol; 2014 May; 173(2):378-90. PubMed ID: 24648141
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Removable air-cathode to overcome cathode biofouling in microbial fuel cells.
    Oliot M; Etcheverry L; Bergel A
    Bioresour Technol; 2016 Dec; 221():691-696. PubMed ID: 27712857
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The performance and long-term stability of low-cost separators in single-chamber bottle-type microbial fuel cells.
    Kondaveeti S; Kakarla R; Kim HS; Kim BG; Min B
    Environ Technol; 2018 Feb; 39(3):288-297. PubMed ID: 28278086
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Assessment of expanded polystyrene as a separator in microbial fuel cell.
    Mathuriya AS; Pant D
    Environ Technol; 2019 Jul; 40(16):2052-2061. PubMed ID: 29384429
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cathodic biofouling control by microbial separators in air-breathing microbial fuel cells.
    Li C; Yi K; Hu S; Yang W
    Environ Sci Ecotechnol; 2023 Jul; 15():100251. PubMed ID: 36923605
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Electric field induced salt precipitation into activated carbon air-cathode causes power decay in microbial fuel cells.
    An J; Li N; Wan L; Zhou L; Du Q; Li T; Wang X
    Water Res; 2017 Oct; 123():369-377. PubMed ID: 28686939
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells.
    Logan B; Cheng S; Watson V; Estadt G
    Environ Sci Technol; 2007 May; 41(9):3341-6. PubMed ID: 17539547
    [TBL] [Abstract][Full Text] [Related]  

  • 28. In situ investigation of cathode and local biofilm microenvironments reveals important roles of OH- and oxygen transport in microbial fuel cells.
    Yuan Y; Zhou S; Tang J
    Environ Sci Technol; 2013 May; 47(9):4911-7. PubMed ID: 23537198
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microbial fuel cells using Cellulomonas spp. with cellulose as fuel.
    Takeuchi Y; Khawdas W; Aso Y; Ohara H
    J Biosci Bioeng; 2017 Mar; 123(3):358-363. PubMed ID: 27818074
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Simultaneous Congo red decolorization and electricity generation in air-cathode single-chamber microbial fuel cell with different microfiltration, ultrafiltration and proton exchange membranes.
    Hou B; Sun J; Hu YY
    Bioresour Technol; 2011 Mar; 102(6):4433-8. PubMed ID: 21251817
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of proton exchange membrane on the performance and microbial community composition of air-cathode microbial fuel cells.
    Lee YY; Kim TG; Cho KS
    J Biotechnol; 2015 Oct; 211():130-7. PubMed ID: 26235818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Accelerated tests for evaluating the air-cathode aging in microbial fuel cells.
    Gao N; Fan Y; Wang L; Long F; Deng D; Liu H
    Bioresour Technol; 2020 Feb; 297():122479. PubMed ID: 31813816
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using a glass fiber separator in a single-chamber air-cathode microbial fuel cell shortens start-up time and improves anode performance at ambient and mesophilic temperatures.
    Zhang X; Liang P; Shi J; Wei J; Huang X
    Bioresour Technol; 2013 Feb; 130():529-35. PubMed ID: 23334007
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Anolyte recirculation effects in buffered and unbuffered single-chamber air-cathode microbial fuel cells.
    Zhang L; Zhu X; Kashima H; Li J; Ye DD; Liao Q; Regan JM
    Bioresour Technol; 2015 Mar; 179():26-34. PubMed ID: 25514399
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Minimum interspatial electrode spacing to optimize air-cathode microbial fuel cell operation with a membrane electrode assembly.
    Moon JM; Kondaveeti S; Lee TH; Song YC; Min B
    Bioelectrochemistry; 2015 Dec; 106(Pt B):263-7. PubMed ID: 26286838
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Application of biomimetically synthesized silver nanoparticles as cathode catalyst, quorum-quencher, and anti-biofouling agent for the performance boosting of microbial fuel cell.
    Das S; Tripathi A; Ghangrekar MM
    Chemosphere; 2024 Mar; 352():141392. PubMed ID: 38325616
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhanced performance of air-cathode two-chamber microbial fuel cells with high-pH anode and low-pH cathode.
    Zhuang L; Zhou S; Li Y; Yuan Y
    Bioresour Technol; 2010 May; 101(10):3514-9. PubMed ID: 20093009
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancement of electricity production in a mediatorless air-cathode microbial fuel cell using Klebsiella sp. IR21.
    Lee YY; Kim TG; Cho KS
    Bioprocess Biosyst Eng; 2016 Jun; 39(6):1005-14. PubMed ID: 26956141
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Long-term performance of activated carbon air cathodes with different diffusion layer porosities in microbial fuel cells.
    Zhang F; Pant D; Logan BE
    Biosens Bioelectron; 2011 Dec; 30(1):49-55. PubMed ID: 21937216
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Construction and operation of microbial fuel cell with Chlorella vulgaris biocathode for electricity generation.
    Wu XY; Song TS; Zhu XJ; Wei P; Zhou CC
    Appl Biochem Biotechnol; 2013 Dec; 171(8):2082-92. PubMed ID: 24026413
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.