BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 27457057)

  • 1. Simultaneous degradation of refractory organic pesticide and bioelectricity generation in a soil microbial fuel cell with different conditions.
    Cao X; Yu C; Wang H; Zhou F; Li X
    Environ Technol; 2017 Apr; 38(8):1043-1050. PubMed ID: 27457057
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Simultaneous degradation of toxic refractory organic pesticide and bioelectricity generation using a soil microbial fuel cell.
    Cao X; Song HL; Yu CY; Li XN
    Bioresour Technol; 2015; 189():87-93. PubMed ID: 25864035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reductive dechlorination of hexachlorobenzene subjected to several conditions in a bioelectrochemical system.
    Wang H; Yi S; Cao X; Fang Z; Li X
    Ecotoxicol Environ Saf; 2017 May; 139():172-178. PubMed ID: 28135664
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Augmenting atrazine and hexachlorobenzene degradation under different soil redox conditions in a bioelectrochemistry system and an analysis of the relevant microorganisms.
    Wang H; Cao X; Li L; Fang Z; Li X
    Ecotoxicol Environ Saf; 2018 Jan; 147():735-741. PubMed ID: 28942276
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of microbial species, organic loading and substrate degradation rate on the power generation capability of microbial fuel cells.
    Juang DF; Yang PC; Chou HY; Chiu LJ
    Biotechnol Lett; 2011 Nov; 33(11):2147-60. PubMed ID: 21750995
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioelectrochemical removal of tetracycline from four typical soils in China: A performance assessment.
    Zhao X; Li X; Zhang X; Li Y; Weng L; Ren T; Li Y
    Bioelectrochemistry; 2019 Oct; 129():26-33. PubMed ID: 31100650
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Carbon fiber enhanced bioelectricity generation in soil microbial fuel cells.
    Li X; Wang X; Zhao Q; Wan L; Li Y; Zhou Q
    Biosens Bioelectron; 2016 Nov; 85():135-141. PubMed ID: 27162144
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The variation of power generation with organic substrates in single-chamber microbial fuel cells (SCMFCs).
    Sharma Y; Li B
    Bioresour Technol; 2010 Mar; 101(6):1844-50. PubMed ID: 19931449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of various organic carbon sources on simultaneous V(V) reduction and bioelectricity generation in single chamber microbial fuel cells.
    Hao L; Zhang B; Cheng M; Feng C
    Bioresour Technol; 2016 Feb; 201():105-10. PubMed ID: 26642216
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioelectricity production from soil using microbial fuel cells.
    Wolińska A; Stępniewska Z; Bielecka A; Ciepielski J
    Appl Biochem Biotechnol; 2014 Aug; 173(8):2287-96. PubMed ID: 24980749
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of cathode/anode electron accumulation on soil microbial fuel cell power generation and heavy metal removal.
    Zhang J; Sun Y; Zhang H; Cao X; Wang H; Li X
    Environ Res; 2021 Jul; 198():111217. PubMed ID: 33974843
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Relationships between soil organic matter, nutrients, bacterial community structure, and the performance of microbial fuel cells.
    Dunaj SJ; Vallino JJ; Hines ME; Gay M; Kobyljanec C; Rooney-Varga JN
    Environ Sci Technol; 2012 Feb; 46(3):1914-22. PubMed ID: 22243479
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Remediation of hexachlorobenzene contaminated soils by rhamnolipid enhanced soil washing coupled with activated carbon selective adsorption.
    Wan J; Chai L; Lu X; Lin Y; Zhang S
    J Hazard Mater; 2011 May; 189(1-2):458-64. PubMed ID: 21397398
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Effect of low-molecular-weight organic carbon on anaerobic degradation and volatilization of hexachlorobenzene in soils].
    Liu CY; Yu GF; Jiang X; Wang T
    Huan Jing Ke Xue; 2008 May; 29(5):1418-24. PubMed ID: 18624217
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How soil organic matter composition controls hexachlorobenzene-soil-interactions: adsorption isotherms and quantum chemical modeling.
    Ahmed AA; Kühn O; Aziz SG; Hilal RH; Leinweber P
    Sci Total Environ; 2014 Apr; 476-477():98-106. PubMed ID: 24463030
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cathodic microbial community adaptation to the removal of chlorinated herbicide in soil microbial fuel cells.
    Li Y; Li X; Sun Y; Zhao X; Li Y
    Environ Sci Pollut Res Int; 2018 Jun; 25(17):16900-16912. PubMed ID: 29623641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pre-acclimation of a wastewater inoculum to cellulose in an aqueous-cathode MEC improves power generation in air-cathode MFCs.
    Cheng S; Kiely P; Logan BE
    Bioresour Technol; 2011 Jan; 102(1):367-71. PubMed ID: 20580223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Treatment of biodiesel production wastes with simultaneous electricity generation using a single-chamber microbial fuel cell.
    Feng Y; Yang Q; Wang X; Liu Y; Lee H; Ren N
    Bioresour Technol; 2011 Jan; 102(1):411-5. PubMed ID: 20889062
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electricity generation from cysteine in a microbial fuel cell.
    Logan BE; Murano C; Scott K; Gray ND; Head IM
    Water Res; 2005 Mar; 39(5):942-52. PubMed ID: 15743641
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Layer-by-layer construction of graphene-based microbial fuel cell for improved power generation and methyl orange removal.
    Guo W; Cui Y; Song H; Sun J
    Bioprocess Biosyst Eng; 2014 Sep; 37(9):1749-58. PubMed ID: 24535080
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.