BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 27457402)

  • 1. Label-Free Analysis of Single Viruses with a Resolution Comparable to That of Electron Microscopy and the Throughput of Flow Cytometry.
    Ma L; Zhu S; Tian Y; Zhang W; Wang S; Chen C; Wu L; Yan X
    Angew Chem Int Ed Engl; 2016 Aug; 55(35):10239-43. PubMed ID: 27457402
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Light-Scattering Sizing of Single Submicron Particles by High-Sensitivity Flow Cytometry.
    Zhang W; Tian Y; Hu X; He S; Niu Q; Chen C; Zhu S; Yan X
    Anal Chem; 2018 Nov; 90(21):12768-12775. PubMed ID: 30277744
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Light-scattering detection below the level of single fluorescent molecules for high-resolution characterization of functional nanoparticles.
    Zhu S; Ma L; Wang S; Chen C; Zhang W; Yang L; Hang W; Nolan JP; Wu L; Yan X
    ACS Nano; 2014 Oct; 8(10):10998-1006. PubMed ID: 25300001
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Label-free identification of single dielectric nanoparticles and viruses with ultraweak polarization forces.
    Fumagalli L; Esteban-Ferrer D; Cuervo A; Carrascosa JL; Gomila G
    Nat Mater; 2012 Sep; 11(9):808-16. PubMed ID: 22772654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantitative Assessment of the Physical Virus Titer and Purity by Ultrasensitive Flow Virometry.
    Niu Q; Ma L; Zhu S; Li L; Zheng Q; Hou J; Lian H; Wu L; Yan X
    Angew Chem Int Ed Engl; 2021 Apr; 60(17):9351-9356. PubMed ID: 33590592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flow cytometer for measurement of the light scattering of viral and other submicroscopic particles.
    Steen HB
    Cytometry A; 2004 Feb; 57(2):94-9. PubMed ID: 14750130
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-Throughput Single-Particle Analysis of Metal-Enhanced Fluorescence in Free Solution Using Ag@SiO
    Yan Y; Meng L; Zhang W; Zheng Y; Wang S; Ren B; Yang Z; Yan X
    ACS Sens; 2017 Sep; 2(9):1369-1376. PubMed ID: 28836759
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A high-throughput label-free nanoparticle analyser.
    Fraikin JL; Teesalu T; McKenney CM; Ruoslahti E; Cleland AN
    Nat Nanotechnol; 2011 May; 6(5):308-13. PubMed ID: 21378975
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Qualitative and quantitative detection of T7 bacteriophages using paper based sandwich ELISA.
    Khan MS; Pande T; van de Ven TG
    Colloids Surf B Biointerfaces; 2015 Aug; 132():264-70. PubMed ID: 26052109
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantitative intercomparison of transmission electron microscopy, flow cytometry, and epifluorescence microscopy for nanometric particle analysis.
    Ferris MM; Stoffel CL; Maurer TT; Rowlen KL
    Anal Biochem; 2002 May; 304(2):249-56. PubMed ID: 12009703
    [TBL] [Abstract][Full Text] [Related]  

  • 11. 2D light scattering static cytometry for label-free single cell analysis with submicron resolution.
    Xie L; Yang Y; Sun X; Qiao X; Liu Q; Song K; Kong B; Su X
    Cytometry A; 2015 Nov; 87(11):1029-37. PubMed ID: 26115102
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antibody modified gold nanoparticles for fast and selective, colorimetric T7 bacteriophage detection.
    Lesniewski A; Los M; Jonsson-Niedziółka M; Krajewska A; Szot K; Los JM; Niedziolka-Jonsson J
    Bioconjug Chem; 2014 Apr; 25(4):644-8. PubMed ID: 24679221
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flow Cytometry Sorting to Separate Viable Giant Viruses from Amoeba Co-culture Supernatants.
    Khalil JY; Langlois T; Andreani J; Sorraing JM; Raoult D; Camoin L; La Scola B
    Front Cell Infect Microbiol; 2016; 6():202. PubMed ID: 28111619
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of different analytical methods for the characterization of non-spherical micro- and nanoparticles.
    Mathaes R; Winter G; Engert J; Besheer A
    Int J Pharm; 2013 Sep; 453(2):620-9. PubMed ID: 23727141
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characterization, detection, and counting of metal nanoparticles using flow cytometry.
    Zucker RM; Ortenzio JN; Boyes WK
    Cytometry A; 2016 Feb; 89(2):169-83. PubMed ID: 26619039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High-Throughput, High-Resolution Interferometric Light Microscopy of Biological Nanoparticles.
    Yurdakul C; Avci O; Matlock A; Devaux AJ; Quintero MV; Ozbay E; Davey RA; Connor JH; Karl WC; Tian L; Ünlü MS
    ACS Nano; 2020 Feb; 14(2):2002-2013. PubMed ID: 32003974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Refractive Index Determination of Individual Viruses and Small Extracellular Vesicles in Aqueous Media Using Nano-Flow Cytometry.
    Tian Y; Xue C; Zhang W; Chen C; Ma L; Niu Q; Wu L; Yan X
    Anal Chem; 2022 Oct; 94(41):14299-14307. PubMed ID: 36084271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-Throughput Counting and Sizing of Therapeutic Protein Aggregates in the Nanometer Size Range by Nano-Flow Cytometry.
    Gao K; Lian H; Xue C; Zhou J; Yan X
    Anal Chem; 2022 Dec; 94(50):17634-17644. PubMed ID: 36474427
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of herpes simplex virus type I nuclear particles by flow cytometry.
    Loret S; El Bilali N; Lippé R
    Cytometry A; 2012 Nov; 81(11):950-9. PubMed ID: 22930570
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Webcam-based flow cytometer using wide-field imaging for low cell number detection at high throughput.
    Balsam J; Bruck HA; Rasooly A
    Analyst; 2014 Sep; 139(17):4322-9. PubMed ID: 24995370
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.