These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
527 related articles for article (PubMed ID: 27457492)
21. New Research for Quinazoline-2,4-diones as HPPD Inhibitors Based on 2D-MLR and 3D-QSAR Models. Fu Y; Sun YN; Cao HF; Yi KH; Zhao LX; Li JZ; Ye F Comb Chem High Throughput Screen; 2017; 20(9):748-759. PubMed ID: 28637410 [TBL] [Abstract][Full Text] [Related]
22. Comparison of QSAR models based on combinations of genetic algorithm, stepwise multiple linear regression, and artificial neural network methods to predict Kd of some derivatives of aromatic sulfonamides as carbonic anhydrase II inhibitors. Maleki A; Daraei H; Alaei L; Faraji A Bioorg Khim; 2014; 40(1):70-84. PubMed ID: 25898725 [TBL] [Abstract][Full Text] [Related]
23. QSAR studies on N-aryl derivative activity towards Alzheimer's disease. Solomon KA; Sundararajan S; Abirami V Molecules; 2009 Apr; 14(4):1448-55. PubMed ID: 19384276 [TBL] [Abstract][Full Text] [Related]
24. Linear and nonlinear modeling of antifungal activity of some heterocyclic ring derivatives using multiple linear regression and Bayesian-regularized neural networks. Caballero J; Fernández M J Mol Model; 2006 Jan; 12(2):168-81. PubMed ID: 16205958 [TBL] [Abstract][Full Text] [Related]
25. Predictive QSAR modeling of CCR5 antagonist piperidine derivatives using chemometric tools. Roy K; Mandal AS J Enzyme Inhib Med Chem; 2009 Feb; 24(1):205-23. PubMed ID: 18608745 [TBL] [Abstract][Full Text] [Related]
26. Exploring the QSAR's predictive truthfulness of the novel N-tuple discrete derivative indices on benchmark datasets. Martínez-Santiago O; Marrero-Ponce Y; Vivas-Reyes R; Rivera-Borroto OM; Hurtado E; Treto-Suarez MA; Ramos Y; Vergara-Murillo F; Orozco-Ugarriza ME; Martínez-López Y SAR QSAR Environ Res; 2017 May; 28(5):367-389. PubMed ID: 28590848 [TBL] [Abstract][Full Text] [Related]
27. Quantitative structure-activity relationship study of aromatic inhibitors against rat lens aldose reductase activity using variable selections. Jung M; Lee Y; Shim M; Lim E; Lee EJ; Lee HC Med Chem; 2013 May; 9(3):410-9. PubMed ID: 22931492 [TBL] [Abstract][Full Text] [Related]
28. Application of quantitative structure-property relationship analysis to estimate the vapor pressure of pesticides. Goodarzi M; Coelho Ldos S; Honarparvar B; Ortiz EV; Duchowicz PR Ecotoxicol Environ Saf; 2016 Jun; 128():52-60. PubMed ID: 26890190 [TBL] [Abstract][Full Text] [Related]
29. Comparison of Multiple Linear Regressions and Neural Networks based QSAR models for the design of new antitubercular compounds. Ventura C; Latino DA; Martins F Eur J Med Chem; 2013; 70():831-45. PubMed ID: 24246731 [TBL] [Abstract][Full Text] [Related]
30. New QSPR Models to Predict the Flammability of Binary Liquid Mixtures. Fayet G; Rotureau P Mol Inform; 2019 Aug; 38(8-9):e1800122. PubMed ID: 30653824 [TBL] [Abstract][Full Text] [Related]
32. Genetic algorithms and self-organizing maps: a powerful combination for modeling complex QSAR and QSPR problems. Bayram E; Santago P; Harris R; Xiao YD; Clauset AJ; Schmitt JD J Comput Aided Mol Des; 2004; 18(7-9):483-93. PubMed ID: 15729848 [TBL] [Abstract][Full Text] [Related]
33. Modeling in vitro inhibition of butyrylcholinesterase using molecular docking, multi-linear regression and artificial neural network approaches. Zheng F; Zhan M; Huang X; Abdul Hameed MD; Zhan CG Bioorg Med Chem; 2014 Jan; 22(1):538-49. PubMed ID: 24290065 [TBL] [Abstract][Full Text] [Related]
34. QSAR studies of the bioactivity of hepatitis C virus (HCV) NS3/4A protease inhibitors by multiple linear regression (MLR) and support vector machine (SVM). Qin Z; Wang M; Yan A Bioorg Med Chem Lett; 2017 Jul; 27(13):2931-2938. PubMed ID: 28501513 [TBL] [Abstract][Full Text] [Related]
35. Evaluation of QSAR Equations for Virtual Screening. Spiegel J; Senderowitz H Int J Mol Sci; 2020 Oct; 21(21):. PubMed ID: 33105703 [TBL] [Abstract][Full Text] [Related]
36. Comparison of MLR, PLS and GA-MLR in QSAR analysis. Saxena AK; Prathipati P SAR QSAR Environ Res; 2003; 14(5-6):433-45. PubMed ID: 14758986 [TBL] [Abstract][Full Text] [Related]
37. QSPR studies of impact sensitivity of nitro energetic compounds using three-dimensional descriptors. Xu J; Zhu L; Fang D; Wang L; Xiao S; Liu L; Xu W J Mol Graph Model; 2012 Jun; 36():10-9. PubMed ID: 22503858 [TBL] [Abstract][Full Text] [Related]
38. Rational Design of a Low-Data Regime of Pyrrole Antioxidants for Radical Scavenging Activities Using Quantum Chemical Descriptors and QSAR with the GA-MLR and ANN Concepts. Xie W; Wiriyarattanakul S; Rungrotmongkol T; Shi L; Wiriyarattanakul A; Maitarad P Molecules; 2023 Feb; 28(4):. PubMed ID: 36838583 [TBL] [Abstract][Full Text] [Related]
39. QSPR models for half-wave reduction potential of steroids: a comparative study between feature selection and feature extraction from subsets of or entire set of descriptors. Hemmateenejad B; Yazdani M Anal Chim Acta; 2009 Feb; 634(1):27-35. PubMed ID: 19154806 [TBL] [Abstract][Full Text] [Related]
40. Combination of genetic algorithm and partial least squares for cloud point prediction of nonionic surfactants from molecular structures. Ghasemi J; Ahmadi S Ann Chim; 2007; 97(1-2):69-83. PubMed ID: 17822265 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]