These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 27457535)

  • 1. Fabrication of a turbid optofluidic phantom device with tunable μa and μ's to simulate cutaneous vascular perfusion.
    Chen C; Ahmed M; Häfner T; Klämpfl F; Stelzle F; Schmidt M
    Sci Rep; 2016 Jul; 6():30567. PubMed ID: 27457535
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and characterization of multi-biomarker optimized tissue-mimicking phantoms for multi-modal optical spectroscopy.
    Gautam R; Mac Mahon D; Eager G; Ma H; Guadagno CN; Andersson-Engels S; Konugolu Venkata Sekar S
    Analyst; 2023 Sep; 148(19):4768-4776. PubMed ID: 37665320
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Preparation of a skin equivalent phantom with interior micron-scale vessel structures for optical imaging experiments.
    Chen C; Klämpfl F; Knipfer C; Riemann M; Kanawade R; Stelzle F; Schmidt M
    Biomed Opt Express; 2014 Sep; 5(9):3140-9. PubMed ID: 25401027
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of changes in tissue optical properties on near-infrared diffuse correlation spectroscopy measures of skeletal muscle blood flow.
    Bartlett MF; Jordan SM; Hueber DM; Nelson MD
    J Appl Physiol (1985); 2021 Apr; 130(4):1183-1195. PubMed ID: 33571054
    [TBL] [Abstract][Full Text] [Related]  

  • 5. BIAN: A Multilayer Microfluidic-Based Tissue-Mimicking Phantom for Near-Infrared Imaging.
    Li T; Kalyanov A; Wolf M; Ackermann M; Russomanno E; Jiang J; Mata ADC
    Adv Exp Med Biol; 2023; 1438():179-183. PubMed ID: 37845458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative prediction of AFB
    He X; You J; Yang X; Li L; Shen F; Wang L; Li P; Fang Y
    Spectrochim Acta A Mol Biomol Spectrosc; 2024 Apr; 310():123900. PubMed ID: 38262292
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printing-assisted fabrication of double-layered optical tissue phantoms for laser tattoo treatments.
    Kim H; Hau NT; Chae YG; Lee BI; Kang HW
    Lasers Surg Med; 2016 Apr; 48(4):392-9. PubMed ID: 26749358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated optofluidic-microfluidic twin channels: toward diverse application of lab-on-a-chip systems.
    Lv C; Xia H; Guan W; Sun YL; Tian ZN; Jiang T; Wang YS; Zhang YL; Chen QD; Ariga K; Yu YD; Sun HB
    Sci Rep; 2016 Jan; 6():19801. PubMed ID: 26823292
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microfluidic-based generation of functional microfibers for biomimetic complex tissue construction.
    Zuo Y; He X; Yang Y; Wei D; Sun J; Zhong M; Xie R; Fan H; Zhang X
    Acta Biomater; 2016 Jul; 38():153-62. PubMed ID: 27130274
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of a multilayer tissue-mimicking phantom with tunable optical properties to simulate vascular oxygenation and perfusion for optical imaging technology.
    Liu G; Huang K; Jia Q; Liu S; Shen S; Li J; Dong E; Lemaillet P; Allen DW; Xu RX
    Appl Opt; 2018 Aug; 57(23):6772-6780. PubMed ID: 30129625
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring of tissue optical properties during thermal coagulation of ex vivo tissues.
    Nagarajan VK; Yu B
    Lasers Surg Med; 2016 Sep; 48(7):686-94. PubMed ID: 27250022
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Microfabrication of polydimethylsiloxane phantoms to simulate tumor hypoxia and vascular anomaly.
    Wu Q; Ren W; Yu Z; Dong E; Zhang S; Xu RX
    J Biomed Opt; 2015; 20(12):121308. PubMed ID: 26456687
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recovering the superficial microvascular pattern via diffuse reflection imaging: phantom validation.
    Chen C; Florian K; Rajesh K; Max R; Christian K; Florian S; Michael S
    Biomed Eng Online; 2015 Sep; 14():87. PubMed ID: 26419826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optical Absorption and Scattering Properties at 900-1650 nm and Their Relationships with Soluble Solid Content and Soluble Sugars in Apple Flesh during Storage.
    Fang L; Wei K; Feng L; Tu K; Peng J; Wang J; Pan L
    Foods; 2020 Dec; 9(12):. PubMed ID: 33348711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optical and acoustic properties at 1064 nm of polyvinyl chloride-plastisol for use as a tissue phantom in biomedical optoacoustics.
    Spirou GM; Oraevsky AA; Vitkin IA; Whelan WM
    Phys Med Biol; 2005 Jul; 50(14):N141-53. PubMed ID: 16177502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Optofluidic Imaging System Integrated with Tunable Microlens Arrays.
    Zhong Y; Yu H; Wen Y; Zhou P; Guo H; Zou W; Lv X; Liu L
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):11994-12004. PubMed ID: 36655899
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Optofluidic light modulator integrated in lab-on-a-chip.
    Paiè P; Bragheri F; Claude T; Osellame R
    Opt Express; 2017 Apr; 25(7):7313-7323. PubMed ID: 28380855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a portable phantom device to simulate tissue oxygenation and blood perfusion.
    Lv X; Chen H; Liu G; Shen S; Wu Q; Hu C; Li J; Dong E; Xu RX
    Appl Opt; 2018 May; 57(14):3938-3946. PubMed ID: 29791363
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oximetry based on diffuse photon density wave differentials.
    Ntziachristos V; Kohl M; Ma H; Chance B
    Med Phys; 2000 Feb; 27(2):410-21. PubMed ID: 10718146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optofluidic bioimaging platform for quantitative phase imaging of lab on a chip devices using digital holographic microscopy.
    Pandiyan VP; John R
    Appl Opt; 2016 Jan; 55(3):A54-9. PubMed ID: 26835958
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.