These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 27457731)

  • 1. Dehydrogenation of anhydrous methanol at room temperature by o-aminophenol-based photocatalysts.
    Wakizaka M; Matsumoto T; Tanaka R; Chang HC
    Nat Commun; 2016 Jul; 7():12333. PubMed ID: 27457731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Gas-phase phenol methylation over Mg/Me/O (Me = Al, Cr, Fe) catalysts: mechanistic implications due to different acid-base and dehydrogenating properties.
    Crocellà V; Cerrato G; Magnacca G; Morterra C; Cavani F; Maselli L; Passeri S
    Dalton Trans; 2010 Sep; 39(36):8527-37. PubMed ID: 20689870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zinc(II), iron(II/III) and ruthenium(II) complexes of o-phenylenediamine derivatives: oxidative dehydrogenation and photoluminescence.
    Chaudhuri S; Patra SC; Saha P; Saha Roy A; Maity S; Bera S; Saha Sardar P; Ghosh S; Weyhermüller T; Ghosh P
    Dalton Trans; 2013 Nov; 42(42):15028-42. PubMed ID: 23995286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinduced Room-Temperature Methanol Reforming.
    Heim LE; Thiel D; Gedig C; Deska J; Prechtl MH
    Angew Chem Int Ed Engl; 2015 Aug; 54(35):10308-12. PubMed ID: 26179443
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Computational mechanistic studies of ruthenium catalysed methanol dehydrogenation.
    de Zwart FJ; Sinha V; Trincado M; Grützmacher H; de Bruin B
    Dalton Trans; 2022 Feb; 51(8):3019-3026. PubMed ID: 35079760
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the reactions of small neutral iron oxide clusters with methanol.
    Xie Y; Dong F; Heinbuch S; Rocca JJ; Bernstein ER
    J Chem Phys; 2009 Mar; 130(11):114306. PubMed ID: 19317538
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reaction mechanism of methanol to formaldehyde over Fe- and FeO-modified graphene.
    Thivasasith A; Sirijaraensre J; Khongpracha P; Warakulwit C; Jansang B; Limtrakul J
    Chemphyschem; 2015 Apr; 16(5):986-92. PubMed ID: 25640257
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Acceptorless dehydrogenation of small molecules through cooperative base metal catalysis.
    West JG; Huang D; Sorensen EJ
    Nat Commun; 2015 Dec; 6():10093. PubMed ID: 26656087
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular-scale perspective of water-catalyzed methanol dehydrogenation to formaldehyde.
    Boucher MB; Marcinkowski MD; Liriano ML; Murphy CJ; Lewis EA; Jewell AD; Mattera MF; Kyriakou G; Flytzani-Stephanopoulos M; Sykes EC
    ACS Nano; 2013 Jul; 7(7):6181-7. PubMed ID: 23746268
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Room temperature stable CO
    Liu Z; Yin Z; Cox C; Bosman M; Qian X; Li N; Zhao H; Du Y; Li J; Nocera DG
    Sci Adv; 2016 Sep; 2(9):e1501425. PubMed ID: 28508036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Light-driven hydrogen production catalysed by transition metal complexes in homogeneous systems.
    Wang M; Na Y; Gorlov M; Sun L
    Dalton Trans; 2009 Sep; (33):6458-67. PubMed ID: 19672488
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dimethylammonium hexanoate stabilized rhodium(0) nanoclusters identified as true heterogeneous catalysts with the highest observed activity in the dehydrogenation of dimethylamine-borane.
    Zahmakiran M; Ozkar S
    Inorg Chem; 2009 Sep; 48(18):8955-64. PubMed ID: 19702246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Observation of the Reaction Intermediates of Methanol Dehydrogenation by Cationic Vanadium Clusters.
    Hou GL; Faragó E; Buzsáki D; Nyulászi L; Höltzl T; Janssens E
    Angew Chem Int Ed Engl; 2021 Feb; 60(9):4756-4763. PubMed ID: 33200509
    [TBL] [Abstract][Full Text] [Related]  

  • 14. One-step synthesis of stoichiometrically defined metal oxide nanoparticles at room temperature.
    Chen L; Xu J; Tanner DA; Phelan R; Van der Meulen M; Holmes JD; Morris MA
    Chemistry; 2009; 15(2):440-8. PubMed ID: 18991306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DFT Mechanistic Investigation on Manganese Pincer Complex Catalysed Cross-Coupling of Methanol with Benzyl Alcohol to Afford Methyl Benzoate.
    Ali Q; Li Z; Zhang L; Luo C; Pu M; Lei M
    Chemistry; 2023 Jun; 29(35):e202300565. PubMed ID: 37026372
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alkane metathesis by tandem alkane-dehydrogenation-olefin-metathesis catalysis and related chemistry.
    Haibach MC; Kundu S; Brookhart M; Goldman AS
    Acc Chem Res; 2012 Jun; 45(6):947-58. PubMed ID: 22584036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Formaldehyde degradation in the presence of methanol by photo-Fenton process.
    Kajitvichyanukul P; Lu MC; Jamroensan A
    J Environ Manage; 2008 Feb; 86(3):545-53. PubMed ID: 17320267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanism of methanol oxidation by quinoprotein methanol dehydrogenase.
    Zhang X; Reddy SY; Bruice TC
    Proc Natl Acad Sci U S A; 2007 Jan; 104(3):745-9. PubMed ID: 17215371
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dehydrogenation of methanol on Pd(100): comparison with the results of Pd(111).
    Jiang R; Guo W; Li M; Lu X; Yuan J; Shan H
    Phys Chem Chem Phys; 2010 Jul; 12(28):7794-803. PubMed ID: 20485803
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First observation of highly efficient dehydrogenation of methanol to anhydrous formaldehyde over novel Ag-SiO2-MgO-Al2O3 catalyst.
    Ren LP; Dai WL; Cao Y; Li H; Fan K
    Chem Commun (Camb); 2003 Dec; (24):3030-1. PubMed ID: 14703842
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.