These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 27457759)
1. Variation in the Gut Microbiota of Termites (Tsaitermes ampliceps) Against Different Diets. Su L; Yang L; Huang S; Li Y; Su X; Wang F; Bo C; Wang ET; Song A Appl Biochem Biotechnol; 2017 Jan; 181(1):32-47. PubMed ID: 27457759 [TBL] [Abstract][Full Text] [Related]
2. Linking lignocellulosic dietary patterns with gut microbial Enterotypes of Tsaitermes ampliceps and comparison with Mironasutitermes shangchengensis. Su LJ; Liu YQ; Liu H; Wang Y; Li Y; Lin HM; Wang FQ; Song AD Genet Mol Res; 2015 Oct; 14(4):13954-67. PubMed ID: 26535711 [TBL] [Abstract][Full Text] [Related]
3. Comparative Gut Microbiomes of Four Species Representing the Higher and the Lower Termites. Su L; Yang L; Huang S; Su X; Li Y; Wang F; Wang E; Kang N; Xu J; Song A J Insect Sci; 2016; 16(1):. PubMed ID: 27638955 [TBL] [Abstract][Full Text] [Related]
4. The hindgut lumen prokaryotic microbiota of the termite Reticulitermes flavipes and its responses to dietary lignocellulose composition. Boucias DG; Cai Y; Sun Y; Lietze VU; Sen R; Raychoudhury R; Scharf ME Mol Ecol; 2013 Apr; 22(7):1836-53. PubMed ID: 23379767 [TBL] [Abstract][Full Text] [Related]
5. Compositional and functional characterisation of biomass-degrading microbial communities in guts of plant fibre- and soil-feeding higher termites. Marynowska M; Goux X; Sillam-Dussès D; Rouland-Lefèvre C; Halder R; Wilmes P; Gawron P; Roisin Y; Delfosse P; Calusinska M Microbiome; 2020 Jun; 8(1):96. PubMed ID: 32576253 [TBL] [Abstract][Full Text] [Related]
6. Variations in diversity and richness of gut bacterial communities of termites (Reticulitermes flavipes) fed with grassy and woody plant substrates. Huang XF; Bakker MG; Judd TM; Reardon KF; Vivanco JM Microb Ecol; 2013 Apr; 65(3):531-6. PubMed ID: 23529653 [TBL] [Abstract][Full Text] [Related]
8. Profiling the Succession of Bacterial Communities throughout the Life Stages of a Higher Termite Nasutitermes arborum (Termitidae, Nasutitermitinae) Using 16S rRNA Gene Pyrosequencing. Diouf M; Roy V; Mora P; Frechault S; Lefebvre T; Hervé V; Rouland-Lefèvre C; Miambi E PLoS One; 2015; 10(10):e0140014. PubMed ID: 26444989 [TBL] [Abstract][Full Text] [Related]
9. Diet is the primary determinant of bacterial community structure in the guts of higher termites. Mikaelyan A; Dietrich C; Köhler T; Poulsen M; Sillam-Dussès D; Brune A Mol Ecol; 2015 Oct; 24(20):5284-95. PubMed ID: 26348261 [TBL] [Abstract][Full Text] [Related]
10. Identifying the core microbial community in the gut of fungus-growing termites. Otani S; Mikaelyan A; Nobre T; Hansen LH; Koné NA; Sørensen SJ; Aanen DK; Boomsma JJ; Brune A; Poulsen M Mol Ecol; 2014 Sep; 23(18):4631-44. PubMed ID: 25066007 [TBL] [Abstract][Full Text] [Related]
11. Diet is not the primary driver of bacterial community structure in the gut of litter-feeding cockroaches. Lampert N; Mikaelyan A; Brune A BMC Microbiol; 2019 Oct; 19(1):238. PubMed ID: 31666028 [TBL] [Abstract][Full Text] [Related]
12. Challenges and physiological implications of wood feeding in termites. Scharf ME Curr Opin Insect Sci; 2020 Oct; 41():79-85. PubMed ID: 32823202 [TBL] [Abstract][Full Text] [Related]
13. Diversity and resilience of the wood-feeding higher termite Wang Y; Su L; Huang S; Bo C; Yang S; Li Y; Wang F; Xie H; Xu J; Song A Ecol Evol; 2016 Nov; 6(22):8235-8242. PubMed ID: 27878091 [TBL] [Abstract][Full Text] [Related]
14. EFFECTS OF FIVE DIVERSE LIGNOCELLULOSIC DIETS ON DIGESTIVE ENZYME BIOCHEMISTRY IN THE TERMITE Reticulitermes flavipes. Karl ZJ; Scharf ME Arch Insect Biochem Physiol; 2015 Oct; 90(2):89-103. PubMed ID: 25980379 [TBL] [Abstract][Full Text] [Related]
15. Quantification of symbiotic contributions to lower termite lignocellulose digestion using antimicrobial treatments. Peterson BF; Stewart HL; Scharf ME Insect Biochem Mol Biol; 2015 Apr; 59():80-8. PubMed ID: 25724277 [TBL] [Abstract][Full Text] [Related]
16. Microenvironmental heterogeneity of gut compartments drives bacterial community structure in wood- and humus-feeding higher termites. Mikaelyan A; Meuser K; Brune A FEMS Microbiol Ecol; 2017 Jan; 93(1):. PubMed ID: 27798065 [TBL] [Abstract][Full Text] [Related]
17. Supplementing Blends of Sugars, Amino Acids, and Secondary Metabolites to the Diet of Termites (Reticulitermes flavipes) Drive Distinct Gut Bacterial Communities. Huang XF; Chaparro JM; Reardon KF; Judd TM; Vivanco JM Microb Ecol; 2016 Oct; 72(3):497-502. PubMed ID: 27338261 [TBL] [Abstract][Full Text] [Related]
18. Low-abundant bacteria drive compositional changes in the gut microbiota after dietary alteration. Benjamino J; Lincoln S; Srivastava R; Graf J Microbiome; 2018 May; 6(1):86. PubMed ID: 29747692 [TBL] [Abstract][Full Text] [Related]
19. Evidence from the gut microbiota of swarming alates of a vertical transmission of the bacterial symbionts in Nasutitermes arborum (Termitidae, Nasutitermitinae). Diouf M; Hervé V; Mora P; Robert A; Frechault S; Rouland-Lefèvre C; Miambi E Antonie Van Leeuwenhoek; 2018 Apr; 111(4):573-587. PubMed ID: 29127624 [TBL] [Abstract][Full Text] [Related]
20. Tripartite Symbiotic Digestion of Lignocellulose in the Digestive System of a Fungus-Growing Termite. Ahmad F; Yang G; Zhu Y; Poulsen M; Li W; Yu T; Mo J Microbiol Spectr; 2022 Dec; 10(6):e0123422. PubMed ID: 36250871 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]