BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27457996)

  • 1. Deciphering and modifying LAFL transcriptional regulatory network in seed for improving yield and quality of storage compounds.
    Fatihi A; Boulard C; Bouyer D; Baud S; Dubreucq B; Lepiniec L
    Plant Sci; 2016 Sep; 250():198-204. PubMed ID: 27457996
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular and epigenetic regulations and functions of the LAFL transcriptional regulators that control seed development.
    Lepiniec L; Devic M; Roscoe TJ; Bouyer D; Zhou DX; Boulard C; Baud S; Dubreucq B
    Plant Reprod; 2018 Sep; 31(3):291-307. PubMed ID: 29797091
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deciphering gene regulatory networks that control seed development and maturation in Arabidopsis.
    Santos-Mendoza M; Dubreucq B; Baud S; Parcy F; Caboche M; Lepiniec L
    Plant J; 2008 May; 54(4):608-20. PubMed ID: 18476867
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Potential targets of VIVIPAROUS1/ABI3-LIKE1 (VAL1) repression in developing Arabidopsis thaliana embryos.
    Schneider A; Aghamirzaie D; Elmarakeby H; Poudel AN; Koo AJ; Heath LS; Grene R; Collakova E
    Plant J; 2016 Jan; 85(2):305-19. PubMed ID: 26678037
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distinct roles of LAFL network genes in promoting the embryonic seedling fate in the absence of VAL repression.
    Jia H; McCarty DR; Suzuki M
    Plant Physiol; 2013 Nov; 163(3):1293-305. PubMed ID: 24043445
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transcriptional control of Arabidopsis seed development.
    Verma S; Attuluri VPS; Robert HS
    Planta; 2022 Mar; 255(4):90. PubMed ID: 35318532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct and indirect targets of the arabidopsis seed transcription factor ABSCISIC ACID INSENSITIVE3.
    Tian R; Wang F; Zheng Q; Niza VMAGE; Downie AB; Perry SE
    Plant J; 2020 Aug; 103(5):1679-1694. PubMed ID: 32445409
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HSI2/VAL1 Silences
    Chen N; Veerappan V; Abdelmageed H; Kang M; Allen RD
    Plant Cell; 2018 Mar; 30(3):600-619. PubMed ID: 29475938
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The BABY BOOM Transcription Factor Activates the LEC1-ABI3-FUS3-LEC2 Network to Induce Somatic Embryogenesis.
    Horstman A; Li M; Heidmann I; Weemen M; Chen B; Muino JM; Angenent GC; Boutilier K
    Plant Physiol; 2017 Oct; 175(2):848-857. PubMed ID: 28830937
    [TBL] [Abstract][Full Text] [Related]  

  • 10. LEC1 (NF-YB9) directly interacts with LEC2 to control gene expression in seed.
    Boulard C; Thévenin J; Tranquet O; Laporte V; Lepiniec L; Dubreucq B
    Biochim Biophys Acta Gene Regul Mech; 2018 May; 1861(5):443-450. PubMed ID: 29580949
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regulation of the seed to seedling developmental phase transition by the LAFL and VAL transcription factor networks.
    Jia H; Suzuki M; McCarty DR
    Wiley Interdiscip Rev Dev Biol; 2014; 3(1):135-45. PubMed ID: 24902838
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A network of local and redundant gene regulation governs Arabidopsis seed maturation.
    To A; Valon C; Savino G; Guilleminot J; Devic M; Giraudat J; Parcy F
    Plant Cell; 2006 Jul; 18(7):1642-51. PubMed ID: 16731585
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transcriptional regulation of plant seed development.
    Su L; Wan S; Zhou J; Shao QS; Xing B
    Physiol Plant; 2021 Dec; 173(4):2013-2025. PubMed ID: 34480800
    [TBL] [Abstract][Full Text] [Related]  

  • 14. LEAFY COTYLEDON1 controls seed storage protein genes through its regulation of FUSCA3 and ABSCISIC ACID INSENSITIVE3.
    Kagaya Y; Toyoshima R; Okuda R; Usui H; Yamamoto A; Hattori T
    Plant Cell Physiol; 2005 Mar; 46(3):399-406. PubMed ID: 15695450
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Indirect ABA-dependent regulation of seed storage protein genes by FUSCA3 transcription factor in Arabidopsis.
    Kagaya Y; Okuda R; Ban A; Toyoshima R; Tsutsumida K; Usui H; Yamamoto A; Hattori T
    Plant Cell Physiol; 2005 Feb; 46(2):300-11. PubMed ID: 15695463
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Vegetative desiccation tolerance in the resurrection plant Xerophyta humilis has not evolved through reactivation of the seed canonical LAFL regulatory network.
    Lyall R; Schlebusch SA; Proctor J; Prag M; Hussey SG; Ingle RA; Illing N
    Plant J; 2020 Mar; 101(6):1349-1367. PubMed ID: 31680354
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of direct targets of FUSCA3, a key regulator of Arabidopsis seed development.
    Wang F; Perry SE
    Plant Physiol; 2013 Mar; 161(3):1251-64. PubMed ID: 23314941
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental control of Arabidopsis seed oil biosynthesis.
    Wang H; Guo J; Lambert KN; Lin Y
    Planta; 2007 Aug; 226(3):773-83. PubMed ID: 17522888
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evolutionary Analysis of the
    Han JD; Li X; Jiang CK; Wong GK; Rothfels CJ; Rao GY
    Front Plant Sci; 2017; 8():439. PubMed ID: 28421087
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deciphering the Molecular Mechanisms Underpinning the Transcriptional Control of Gene Expression by Master Transcriptional Regulators in Arabidopsis Seed.
    Baud S; Kelemen Z; Thévenin J; Boulard C; Blanchet S; To A; Payre M; Berger N; Effroy-Cuzzi D; Franco-Zorrilla JM; Godoy M; Solano R; Thevenon E; Parcy F; Lepiniec L; Dubreucq B
    Plant Physiol; 2016 Jun; 171(2):1099-112. PubMed ID: 27208266
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.