These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 27458050)

  • 1. Physics of Fluid Transport in Hybrid Biporous Capillary Wicking Microstructures.
    Ravi S; Dharmarajan R; Moghaddam S
    Langmuir; 2016 Aug; 32(33):8289-97. PubMed ID: 27458050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Multiobjective Optimization of Graded, Hybrid Micropillar Wicks for Capillary-Fed Evaporation.
    Liu T; Asheghi M; Goodson KE
    Langmuir; 2022 Jan; 38(1):221-230. PubMed ID: 34967627
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Measurement of Capillary Radius and Contact Angle within Porous Media.
    Ravi S; Dharmarajan R; Moghaddam S
    Langmuir; 2015 Dec; 31(47):12954-9. PubMed ID: 26538412
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biomimetic Micropillar Wick for Enhanced Thin-Film Evaporation.
    S A; Sharma CS
    Langmuir; 2023 May; 39(19):6855-6864. PubMed ID: 37133504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Local Meniscus Curvature During Steady-State Evaporation from Micropillar Arrays.
    Fleming E; Tsuchiya K; Banerjee D; Zhu G
    ACS Appl Mater Interfaces; 2020 Sep; 12(38):43266-43272. PubMed ID: 32866369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Capillary-Assisted Evaporation/Boiling in PDMS Microchannel Integrated with Wicking Microstructures.
    Li W; Joshi Y
    Langmuir; 2020 Oct; 36(41):12143-12149. PubMed ID: 32877610
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction and Characterization of Dry-out Heat Flux in Micropillar Wick Structures.
    Zhu Y; Antao DS; Lu Z; Somasundaram S; Zhang T; Wang EN
    Langmuir; 2016 Feb; 32(7):1920-7. PubMed ID: 26808963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physics of microstructures enhancement of thin film evaporation heat transfer in microchannels flow boiling.
    Bigham S; Fazeli A; Moghaddam S
    Sci Rep; 2017 Mar; 7():44745. PubMed ID: 28303952
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of the wettability of thin nanostructured films in the presence of evaporation.
    Rogacs A; Steinbrenner JE; Rowlette JA; Weisse JM; Zheng XL; Goodson KE
    J Colloid Interface Sci; 2010 Sep; 349(1):354-60. PubMed ID: 20579656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sampling silica and ferrihydrite colloids with fiberglass wicks under unsaturated conditions.
    Shira JM; Williams BC; Flury M; Czigány S; Tuller M
    J Environ Qual; 2006; 35(4):1127-34. PubMed ID: 16738398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colloid osmotic pressure of interstitial fluid in rat subcutis and skeletal muscle: comparison of various wick sampling techniques.
    Wiig H; Heir S; Aukland K
    Acta Physiol Scand; 1988 Jun; 133(2):167-75. PubMed ID: 3227913
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Influence of Loop Heat Pipe Evaporator Porous Structure Parameters and Charge on Its Effectiveness for Ethanol and Water as Working Fluids.
    Blauciak K; Szymanski P; Mikielewicz D
    Materials (Basel); 2021 Nov; 14(22):. PubMed ID: 34832434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Colloid osmotic pressure of human subcutaneous interstitial fluid sampled by nylon wicks: evaluation of the method.
    Noddeland H
    Scand J Clin Lab Invest; 1982 Apr; 42(2):123-30. PubMed ID: 7134796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wick sampling of interstitial fluid in rat skin: further analysis and modifications of the method.
    Kramer GC; Sibley L; Aukland K; Renkin EM
    Microvasc Res; 1986 Jul; 32(1):39-49. PubMed ID: 3736447
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sampling interstitial fluid from rat skeletal muscles by intermuscular wicks.
    Wiig H; Sibley L; DeCarlo M; Renkin EM
    Am J Physiol; 1991 Jul; 261(1 Pt 2):H155-65. PubMed ID: 1713422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Pore Microstructure Evolution and Porous Properties of Large Capillary Pressure Wicks Sintered with Carbonyl Nickel Powder.
    Zheng F; Wang L; Wang R; Wang J; Zhang S; Hu Q; Wang L
    Materials (Basel); 2022 Aug; 15(17):. PubMed ID: 36079213
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Albumin concentration and colloid osmotic pressure of interstitial fluid collected by wick technique from rat skeletal muscle. Evaluation of the method.
    Reed RK
    Acta Physiol Scand; 1981 May; 112(1):1-5. PubMed ID: 7282401
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of Capillary Flow in a Parallel Microchannel-Based Wick Structure with Circular and Noncircular Geometries.
    Ma B
    Langmuir; 2020 Nov; 36(45):13485-13497. PubMed ID: 33151083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailored nanostructured titania integrated on titanium micropillars with outstanding wicking properties.
    Zuruzi AS; Gardner HC; Monkowski AJ; MacDonald NC
    Lab Chip; 2013 Jun; 13(12):2414-8. PubMed ID: 23657646
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.