These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 27458174)

  • 1. Simultaneous Preconcentration of Copper and Cadmium by Dispersive Liquid-Liquid Microextraction Using N,N'-Bis (2-Hydroxy-5-Bromo-Benzyl)1,2 Diaminopropane and Their Determination by Flame Atomic Absorption Spectrometry.
    Arslan O; Karadaş C; Kara D
    J AOAC Int; 2016 Sep; 99(5):1356-62. PubMed ID: 27458174
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dispersive liquid-liquid microextraction based on solidification of floating organic drop for preconcentration and determination of trace amounts of copper by flame atomic absorption spectrometry.
    Karadaş C; Kara D
    Food Chem; 2017 Apr; 220():242-248. PubMed ID: 27855895
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ultrasound-Assisted Emulsification Microextraction in an Online System for Determination of Cadmium in Water and Tea Samples.
    Nunes LS; Lemos VA
    J AOAC Int; 2018 Sep; 101(5):1647-1652. PubMed ID: 29571304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple and rapid dispersive liquid-liquid microextraction based on solidification of floating organic drop method combined with flame atomic absorption spectrometry for preconcentration and determination of copper.
    Mirzaei M; Behzadi M
    J AOAC Int; 2013; 96(2):441-6. PubMed ID: 23767371
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of response surface methodology for optimization of ionic liquid-based dispersive liquid-liquid microextraction of cadmium from water samples.
    Rajabi M; Kamalabadi M; Jamali MR; Zolgharnein J; Asanjarani N
    Hum Exp Toxicol; 2013 Jun; 32(6):620-31. PubMed ID: 22893353
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A dispersive liquid--liquid microextraction methodology for copper (II) in environmental samples prior to determination using microsample injection flame atomic absorption spectrometry.
    Alothman ZA; Habila M; Yilmaz E; Soylak M
    J AOAC Int; 2013; 96(6):1425-9. PubMed ID: 24645524
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preconcentration procedure using in situ solvent formation microextraction in the presence of ionic liquid for cadmium determination in saline samples by flame atomic absorption spectrometry.
    Mahpishanian S; Shemirani F
    Talanta; 2010 Jul; 82(2):471-6. PubMed ID: 20602922
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Separation and determination of copper in bottled water samples by combination of dispersive liquid--liquid microextraction and microsample introduction flame atomic absorption spectrometry.
    Citak D; Tuzen M
    J AOAC Int; 2013; 96(6):1435-9. PubMed ID: 24645526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surfactant-Assisted Emulsification and Surfactant-Based Dispersive Liquid-Liquid Microextraction Method for Determination of Cu(II) in Food and Water Samples by Flame Atomic Absorption Spectrometry.
    Bi Şgi N AT
    J AOAC Int; 2019 Sep; 102(5):1516-1522. PubMed ID: 31088596
    [No Abstract]   [Full Text] [Related]  

  • 10. Dispersive liquid-liquid microextraction combined with graphite furnace atomic absorption spectrometry: ultra trace determination of cadmium in water samples.
    Zeini Jahromi E; Bidari A; Assadi Y; Milani Hosseini MR; Jamali MR
    Anal Chim Acta; 2007 Mar; 585(2):305-11. PubMed ID: 17386679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In situ metathesis ionic liquid formation dispersive liquid-liquid microextraction for copper determination in water samples by electrothermal atomic absorption spectrometry.
    Stanisz E; Zgoła-Grześkowiak A
    Talanta; 2013 Oct; 115():178-83. PubMed ID: 24054576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Centrifuge-less deep eutectic solvent based magnetic nanofluid-linked air-agitated liquid-liquid microextraction coupled with electrothermal atomic absorption spectrometry for simultaneous determination of cadmium, lead, copper, and arsenic in food samples and non-alcoholic beverages.
    Shirani M; Habibollahi S; Akbari A
    Food Chem; 2019 May; 281():304-311. PubMed ID: 30658761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison Studies on Several Ligands Used in Determination of Cd(II) in Rice by Flame Atomic Absorption Spectrometry after Ultrasound-Assisted Dispersive Liquid-Liquid Microextraction.
    Sun Q; Cui X; Wang Y; Zhang P; Lu W
    Molecules; 2022 Jan; 27(3):. PubMed ID: 35163864
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A new dispersive liquid-liquid microextraction using ionic liquid based microemulsion coupled with cloud point extraction for determination of copper in serum and water samples.
    Arain SA; Kazi TG; Afridi HI; Arain MS; Panhwar AH; Khan N; Baig JA; Shah F
    Ecotoxicol Environ Saf; 2016 Apr; 126():186-192. PubMed ID: 26761783
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Supramolecular-Based Ultrasonic-Assisted Dispersion Solidification Liquid-Liquid Microextraction of Copper and Cobalt Prior to Their Flame Atomic Absorption Spectrometry Determination.
    Shokrollahi A; Ebrahimi F
    J AOAC Int; 2017 Nov; 100(6):1861-1868. PubMed ID: 28807089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Switchable Solvent-Based Liquid Phase Microextraction Method for the Detection of Cadmium in Water Samples with Flame Atomic Absorption Spectrometry.
    Aydin Urucu O; Aracier ED
    J AOAC Int; 2021 Jun; 104(3):645-649. PubMed ID: 33346836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On-line sequential injection dispersive liquid-liquid microextraction system for flame atomic absorption spectrometric determination of copper and lead in water samples.
    Anthemidis AN; Ioannou KI
    Talanta; 2009 Jun; 79(1):86-91. PubMed ID: 19376348
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bovine serum albumin-Cu(II) hybrid nanoflowers: An effective adsorbent for solid phase extraction and slurry sampling flame atomic absorption spectrometric analysis of cadmium and lead in water, hair, food and cigarette samples.
    Yilmaz E; Ocsoy I; Ozdemir N; Soylak M
    Anal Chim Acta; 2016 Feb; 906():110-117. PubMed ID: 26772130
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Optimization of dispersive liquid-liquid microextraction of copper (II) by atomic absorption spectrometry as its oxinate chelate: application to determination of copper in different water samples.
    Farajzadeh MA; Bahram M; Mehr BG; Jönsson JA
    Talanta; 2008 May; 75(3):832-40. PubMed ID: 18585154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasound-assisted emulsification-microextraction combined with flame atomic absorption spectrometry for determination of trace cadmium in water samples.
    Ma JJ; Du X; Zhang JW; Li JC; Wang LZ
    Talanta; 2009 Dec; 80(2):980-4. PubMed ID: 19836582
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.