These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

537 related articles for article (PubMed ID: 27458246)

  • 1. Antitumor Effect of Programmed Death-1 (PD-1) Blockade in Humanized the NOG-MHC Double Knockout Mouse.
    Ashizawa T; Iizuka A; Nonomura C; Kondou R; Maeda C; Miyata H; Sugino T; Mitsuya K; Hayashi N; Nakasu Y; Maruyama K; Yamaguchi K; Katano I; Ito M; Akiyama Y
    Clin Cancer Res; 2017 Jan; 23(1):149-158. PubMed ID: 27458246
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The anti-tumor activity of the STAT3 inhibitor STX-0119 occurs via promotion of tumor-infiltrating lymphocyte accumulation in temozolomide-resistant glioblastoma cell line.
    Akiyama Y; Nonomura C; Ashizawa T; Iizuka A; Kondou R; Miyata H; Sugino T; Mitsuya K; Hayashi N; Nakasu Y; Asai A; Ito M; Kiyohara Y; Yamaguchi K
    Immunol Lett; 2017 Oct; 190():20-25. PubMed ID: 28716484
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Human PBMC-transferred murine MHC class I/II-deficient NOG mice enable long-term evaluation of human immune responses.
    Yaguchi T; Kobayashi A; Inozume T; Morii K; Nagumo H; Nishio H; Iwata T; Ka Y; Katano I; Ito R; Ito M; Kawakami Y
    Cell Mol Immunol; 2018 Nov; 15(11):953-962. PubMed ID: 29151581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improved engraftment of human peripheral blood mononuclear cells in NOG MHC double knockout mice generated using CRISPR/Cas9.
    Ka Y; Katano I; Nishinaka E; Welcker J; Mochizuki M; Kawai K; Goto M; Tomiyama K; Ogura T; Yamamoto T; Ito M; Ito R; Takahashi R
    Immunol Lett; 2021 Jan; 229():55-61. PubMed ID: 33253759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of combination therapy with anti-PD-1 blockade and a STAT3 inhibitor on the tumor-infiltrating lymphocyte status.
    Ashizawa T; Iizuka A; Maeda C; Tanaka E; Kondou R; Miyata H; Sugino T; Kawata T; Deguchi S; Mitsuya K; Hayashi N; Asai A; Ito M; Yamaguchi K; Akiyama Y
    Immunol Lett; 2019 Dec; 216():43-50. PubMed ID: 31586551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Timing of PD-1 Blockade Is Critical to Effective Combination Immunotherapy with Anti-OX40.
    Messenheimer DJ; Jensen SM; Afentoulis ME; Wegmann KW; Feng Z; Friedman DJ; Gough MJ; Urba WJ; Fox BA
    Clin Cancer Res; 2017 Oct; 23(20):6165-6177. PubMed ID: 28855348
    [No Abstract]   [Full Text] [Related]  

  • 7. IL21 Therapy Combined with PD-1 and Tim-3 Blockade Provides Enhanced NK Cell Antitumor Activity against MHC Class I-Deficient Tumors.
    Seo H; Kim BS; Bae EA; Min BS; Han YD; Shin SJ; Kang CY
    Cancer Immunol Res; 2018 Jun; 6(6):685-695. PubMed ID: 29615398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of immune responses to anti-PD-1 mono and combination immunotherapy in hematopoietic humanized mice implanted with tumor xenografts.
    Capasso A; Lang J; Pitts TM; Jordan KR; Lieu CH; Davis SL; Diamond JR; Kopetz S; Barbee J; Peterson J; Freed BM; Yacob BW; Bagby SM; Messersmith WA; Slansky JE; Pelanda R; Eckhardt SG
    J Immunother Cancer; 2019 Feb; 7(1):37. PubMed ID: 30736857
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Establishment of humanized tumor microenvironment mouse models based on the injection of peripheral blood mononuclear cells and IFN-γ to evaluate the efficacy of PD-L1/PD-1-targeted immunotherapy.
    Lin X; Zeng T; Lin J; Zhang Q; Cheng H; Fang S; Lin S; Chen Y; Xu Y; Lin J
    Cancer Biol Ther; 2020; 21(2):130-138. PubMed ID: 31690181
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evaluation of anti-PD-1-based therapy against triple-negative breast cancer patient-derived xenograft tumors engrafted in humanized mouse models.
    Rosato RR; Dávila-González D; Choi DS; Qian W; Chen W; Kozielski AJ; Wong H; Dave B; Chang JC
    Breast Cancer Res; 2018 Sep; 20(1):108. PubMed ID: 30185216
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Establishment of peripheral blood mononuclear cell-derived humanized lung cancer mouse models for studying efficacy of PD-L1/PD-1 targeted immunotherapy.
    Lin S; Huang G; Cheng L; Li Z; Xiao Y; Deng Q; Jiang Y; Li B; Lin S; Wang S; Wu Q; Yao H; Cao S; Li Y; Liu P; Wei W; Pei D; Yao Y; Wen Z; Zhang X; Wu Y; Zhang Z; Cui S; Sun X; Qian X; Li P
    MAbs; 2018; 10(8):1301-1311. PubMed ID: 30204048
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Immunological responses against hepatitis B virus in human peripheral blood mononuclear cell-engrafted mice.
    Aono S; Tatsumi T; Yoshioka T; Tawara S; Nishio A; Onishi Y; Fukutomi K; Nakabori T; Kodama T; Shigekawa M; Hikita H; Sakamori R; Takahashi T; Suemizu H; Takehara T
    Biochem Biophys Res Commun; 2018 Sep; 503(3):1457-1464. PubMed ID: 30033102
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Establishment of Humanized Mice from Peripheral Blood Mononuclear Cells or Cord Blood CD34+ Hematopoietic Stem Cells for Immune-Oncology Studies Evaluating New Therapeutic Agents.
    Verma B; Wesa A
    Curr Protoc Pharmacol; 2020 Jun; 89(1):e77. PubMed ID: 32453514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A human programmed death-ligand 1-expressing mouse tumor model for evaluating the therapeutic efficacy of anti-human PD-L1 antibodies.
    Huang A; Peng D; Guo H; Ben Y; Zuo X; Wu F; Yang X; Teng F; Li Z; Qian X; Qin FX
    Sci Rep; 2017 Feb; 7():42687. PubMed ID: 28202921
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predominant development of mature and functional human NK cells in a novel human IL-2-producing transgenic NOG mouse.
    Katano I; Takahashi T; Ito R; Kamisako T; Mizusawa T; Ka Y; Ogura T; Suemizu H; Kawakami Y; Ito M
    J Immunol; 2015 Apr; 194(7):3513-25. PubMed ID: 25712215
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antitumor activity of the PD-1/PD-L1 binding inhibitor BMS-202 in the humanized MHC-double knockout NOG mouse.
    Ashizawa T; Iizuka A; Tanaka E; Kondou R; Miyata H; Maeda C; Sugino T; Yamaguchi K; Ando T; Ishikawa Y; Ito M; Akiyama Y
    Biomed Res; 2019; 40(6):243-250. PubMed ID: 31839668
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Combination Therapy with Anti-PD-1, Anti-TIM-3, and Focal Radiation Results in Regression of Murine Gliomas.
    Kim JE; Patel MA; Mangraviti A; Kim ES; Theodros D; Velarde E; Liu A; Sankey EW; Tam A; Xu H; Mathios D; Jackson CM; Harris-Bookman S; Garzon-Muvdi T; Sheu M; Martin AM; Tyler BM; Tran PT; Ye X; Olivi A; Taube JM; Burger PC; Drake CG; Brem H; Pardoll DM; Lim M
    Clin Cancer Res; 2017 Jan; 23(1):124-136. PubMed ID: 27358487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lack of acute xenogeneic graft- versus-host disease, but retention of T-cell function following engraftment of human peripheral blood mononuclear cells in NSG mice deficient in MHC class I and II expression.
    Brehm MA; Kenney LL; Wiles MV; Low BE; Tisch RM; Burzenski L; Mueller C; Greiner DL; Shultz LD
    FASEB J; 2019 Mar; 33(3):3137-3151. PubMed ID: 30383447
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphatidylserine-targeting antibodies augment the anti-tumorigenic activity of anti-PD-1 therapy by enhancing immune activation and downregulating pro-oncogenic factors induced by T-cell checkpoint inhibition in murine triple-negative breast cancers.
    Gray MJ; Gong J; Hatch MM; Nguyen V; Hughes CC; Hutchins JT; Freimark BD
    Breast Cancer Res; 2016 May; 18(1):50. PubMed ID: 27169467
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Durable blockade of PD-1 signaling links preclinical efficacy of sintilimab to its clinical benefit.
    Wang J; Fei K; Jing H; Wu Z; Wu W; Zhou S; Ni H; Chen B; Xiong Y; Liu Y; Peng B; Yu D; Jiang H; Liu J
    MAbs; 2019; 11(8):1443-1451. PubMed ID: 31402780
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 27.