These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 27458657)

  • 21. NMR studies of 4-19F-phenylalanine-labeled intestinal fatty acid binding protein: evidence for conformational heterogeneity in the native state.
    Li H; Frieden C
    Biochemistry; 2005 Feb; 44(7):2369-77. PubMed ID: 15709749
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Automated protein structure determination from NMR spectra.
    López-Méndez B; Güntert P
    J Am Chem Soc; 2006 Oct; 128(40):13112-22. PubMed ID: 17017791
    [TBL] [Abstract][Full Text] [Related]  

  • 23. NMR structural studies of the supramolecular adducts between a liver cytosolic bile acid binding protein and gadolinium(III)-chelates bearing bile acids residues: molecular determinants of the binding of a hepatospecific magnetic resonance imaging contrast agent.
    Assfalg M; Gianolio E; Zanzoni S; Tomaselli S; Russo VL; Cabella C; Ragona L; Aime S; Molinari H
    J Med Chem; 2007 Nov; 50(22):5257-68. PubMed ID: 17915850
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A disulfide bridge allows for site-selective binding in liver bile acid binding protein thereby stabilising the orientation of key amino acid side chains.
    Tomaselli S; Assfalg M; Pagano K; Cogliati C; Zanzoni S; Molinari H; Ragona L
    Chemistry; 2012 Mar; 18(10):2857-66. PubMed ID: 22298334
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Negative impact of noise on the principal component analysis of NMR data.
    Halouska S; Powers R
    J Magn Reson; 2006 Jan; 178(1):88-95. PubMed ID: 16198132
    [TBL] [Abstract][Full Text] [Related]  

  • 26. NMR studies reveal the role of biomembranes in modulating ligand binding and release by intracellular bile acid binding proteins.
    Pedò M; Löhr F; D'Onofrio M; Assfalg M; Dötsch V; Molinari H
    J Mol Biol; 2009 Dec; 394(5):852-63. PubMed ID: 19836400
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ligand-receptor binding affinities from saturation transfer difference (STD) NMR spectroscopy: the binding isotherm of STD initial growth rates.
    Angulo J; Enríquez-Navas PM; Nieto PM
    Chemistry; 2010 Jul; 16(26):7803-12. PubMed ID: 20496354
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Principal components analysis of protein structure ensembles calculated using NMR data.
    Howe PW
    J Biomol NMR; 2001 May; 20(1):61-70. PubMed ID: 11430756
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [A fast 3-D medical image registration algorithm using principal component analysis].
    Lu ZT; Chen WF
    Nan Fang Yi Ke Da Xue Xue Bao; 2008 Aug; 28(9):1591-3. PubMed ID: 18819874
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Complete relaxation and conformational exchange matrix (CORCEMA) analysis of intermolecular saturation transfer effects in reversibly forming ligand-receptor complexes.
    Jayalakshmi V; Krishna NR
    J Magn Reson; 2002 Mar; 155(1):106-18. PubMed ID: 11945039
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Determination of differences in the nonvolatile metabolites of pine-mushrooms (Tricholoma matsutake Sing.) according to different parts and heating times using 1H NMR and principal component analysis.
    Cho IH; Kim YS; Lee KW; Choi HK
    J Microbiol Biotechnol; 2007 Oct; 17(10):1682-7. PubMed ID: 18156785
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Facile detection of protein-protein interactions by one-dimensional NMR spectroscopy.
    Araç D; Murphy T; Rizo J
    Biochemistry; 2003 Mar; 42(10):2774-80. PubMed ID: 12627942
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A new algorithm for reliable and general NMR resonance assignment.
    Schmidt E; Güntert P
    J Am Chem Soc; 2012 Aug; 134(30):12817-29. PubMed ID: 22794163
    [TBL] [Abstract][Full Text] [Related]  

  • 34. (13)C-NMR studies on disulfide bond isomerization in bovine pancreatic trypsin inhibitor (BPTI).
    Takeda M; Miyanoiri Y; Terauchi T; Kainosho M
    J Biomol NMR; 2016 Sep; 66(1):37-53. PubMed ID: 27566173
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative analysis of protein-ligand interactions by NMR.
    Furukawa A; Konuma T; Yanaka S; Sugase K
    Prog Nucl Magn Reson Spectrosc; 2016 Aug; 96():47-57. PubMed ID: 27573180
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Fast multidimensional NMR: radial sampling of evolution space.
    Kupce E; Freeman R
    J Magn Reson; 2005 Apr; 173(2):317-21. PubMed ID: 15780924
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Studying "invisible" excited protein states in slow exchange with a major state conformation.
    Vallurupalli P; Bouvignies G; Kay LE
    J Am Chem Soc; 2012 May; 134(19):8148-61. PubMed ID: 22554188
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NMR mapping of the recombinant mouse major urinary protein I binding site occupied by the pheromone 2-sec-butyl-4,5-dihydrothiazole.
    Zídek L; Stone MJ; Lato SM; Pagel MD; Miao Z; Ellington AD; Novotny MV
    Biochemistry; 1999 Aug; 38(31):9850-61. PubMed ID: 10433691
    [TBL] [Abstract][Full Text] [Related]  

  • 39. NMR characterisation of the relationship between frustration and the excited state of Im7.
    Whittaker SB; Clayden NJ; Moore GR
    J Mol Biol; 2011 Dec; 414(4):511-29. PubMed ID: 22019474
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Discrete backbone disorder in the nuclear magnetic resonance structure of apo intestinal fatty acid-binding protein: implications for the mechanism of ligand entry.
    Hodsdon ME; Cistola DP
    Biochemistry; 1997 Feb; 36(6):1450-60. PubMed ID: 9063893
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.