BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 27459084)

  • 1. Highly Uniform Carbon Nanotube Field-Effect Transistors and Medium Scale Integrated Circuits.
    Chen B; Zhang P; Ding L; Han J; Qiu S; Li Q; Zhang Z; Peng LM
    Nano Lett; 2016 Aug; 16(8):5120-8. PubMed ID: 27459084
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films.
    Yang Y; Ding L; Han J; Zhang Z; Peng LM
    ACS Nano; 2017 Apr; 11(4):4124-4132. PubMed ID: 28333433
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Carbon nanotube field-effect transistors for use as pass transistors in integrated logic gates and full subtractor circuits.
    Ding L; Zhang Z; Pei T; Liang S; Wang S; Zhou W; Liu J; Peng LM
    ACS Nano; 2012 May; 6(5):4013-9. PubMed ID: 22482426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon Nanotube Film-Based Radio Frequency Transistors with Maximum Oscillation Frequency above 100 GHz.
    Zhong D; Shi H; Ding L; Zhao C; Liu J; Zhou J; Zhang Z; Peng LM
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42496-42503. PubMed ID: 31618003
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-Dimensional Fin-Structured Semiconducting Carbon Nanotube Network Transistor.
    Lee D; Lee BH; Yoon J; Ahn DC; Park JY; Hur J; Kim MS; Jeon SB; Kang MH; Kim K; Lim M; Choi SJ; Choi YK
    ACS Nano; 2016 Dec; 10(12):10894-10900. PubMed ID: 28024320
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Scalable Preparation of High-Density Semiconducting Carbon Nanotube Arrays for High-Performance Field-Effect Transistors.
    Si J; Zhong D; Xu H; Xiao M; Yu C; Zhang Z; Peng LM
    ACS Nano; 2018 Jan; 12(1):627-634. PubMed ID: 29303553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complementary Transistors Based on Aligned Semiconducting Carbon Nanotube Arrays.
    Liu C; Cao Y; Wang B; Zhang Z; Lin Y; Xu L; Yang Y; Jin C; Peng LM; Zhang Z
    ACS Nano; 2022 Dec; 16(12):21482-21490. PubMed ID: 36416375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Analyzing Gamma-Ray Irradiation Effects on Carbon Nanotube Top-Gated Field-Effect Transistors.
    Zhu M; Zhou J; Sun P; Peng LM; Zhang Z
    ACS Appl Mater Interfaces; 2021 Oct; 13(40):47756-47763. PubMed ID: 34581560
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon Nanotube Complementary Gigahertz Integrated Circuits and Their Applications on Wireless Sensor Interface Systems.
    Liu L; Ding L; Zhong D; Han J; Wang S; Meng Q; Qiu C; Zhang X; Peng LM; Zhang Z
    ACS Nano; 2019 Feb; 13(2):2526-2535. PubMed ID: 30694653
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbon Nanotube Based Radio Frequency Transistors for K-Band Amplifiers.
    Zhou J; Liu L; Shi H; Zhu M; Cheng X; Ren L; Ding L; Peng LM; Zhang Z
    ACS Appl Mater Interfaces; 2021 Aug; 13(31):37475-37482. PubMed ID: 34340306
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improving the Performance of Aligned Carbon Nanotube-Based Transistors by Refreshing the Substrate Surface.
    Lin Y; Cao Y; Lu H; Liu C; Zhang Z; Jin C; Peng LM; Zhang Z
    ACS Appl Mater Interfaces; 2023 Mar; 15(8):10830-10837. PubMed ID: 36795423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Can Carbon Nanotube Transistors Be Scaled Down to the Sub-5 nm Gate Length?
    Xu L; Yang J; Qiu C; Liu S; Zhou W; Li Q; Shi B; Ma J; Yang C; Lu J; Zhang Z
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31957-31967. PubMed ID: 34210135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Scaling carbon nanotube complementary transistors to 5-nm gate lengths.
    Qiu C; Zhang Z; Xiao M; Yang Y; Zhong D; Peng LM
    Science; 2017 Jan; 355(6322):271-276. PubMed ID: 28104886
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs.
    Brady GJ; Way AJ; Safron NS; Evensen HT; Gopalan P; Arnold MS
    Sci Adv; 2016 Sep; 2(9):e1601240. PubMed ID: 27617293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Radiation-Hard and Repairable Complementary Metal-Oxide-Semiconductor Circuits Integrating n-type Indium Oxide and p-type Carbon Nanotube Field-Effect Transistors.
    Luo M; Zhu M; Wei M; Shao S; Robin M; Wei C; Cui Z; Zhao J; Zhang Z
    ACS Appl Mater Interfaces; 2020 Nov; 12(44):49963-49970. PubMed ID: 33095560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal contact effect on the performance and scaling behavior of carbon nanotube thin film transistors.
    Xia J; Dong G; Tian B; Yan Q; Zhang H; Liang X; Peng L
    Nanoscale; 2016 May; 8(19):9988-96. PubMed ID: 27121370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Heavy Ion Displacement Damage Effect in Carbon Nanotube Field Effect Transistors.
    Lu P; Zhu M; Zhao P; Fan C; Zhu H; Gao J; Yang C; Han Z; Li B; Liu J; Zhang Z
    ACS Appl Mater Interfaces; 2023 Mar; 15(8):10936-10946. PubMed ID: 36791232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adaptive logic circuits with doping-free ambipolar carbon nanotube transistors.
    Yu WJ; Kim UJ; Kang BR; Lee IH; Lee EH; Lee YH
    Nano Lett; 2009 Apr; 9(4):1401-5. PubMed ID: 19281215
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Unipolar sequential circuits based on individual-carbon-nanotube transistors and thin-film carbon resistors.
    Ryu H; Kälblein D; Schmidt OG; Klauk H
    ACS Nano; 2011 Sep; 5(9):7525-31. PubMed ID: 21870841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Y-contacted high-performance n-type single-walled carbon nanotube field-effect transistors: scaling and comparison with Sc-contacted devices.
    Ding L; Wang S; Zhang Z; Zeng Q; Wang Z; Pei T; Yang L; Liang X; Shen J; Chen Q; Cui R; Li Y; Peng LM
    Nano Lett; 2009 Dec; 9(12):4209-14. PubMed ID: 19995085
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.