These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
193 related articles for article (PubMed ID: 27459187)
1. Effect of Surface and Salt Properties on the Ion Distribution around Spherical Nanoparticles: Monte Carlo Simulations. Clavier A; Carnal F; Stoll S J Phys Chem B; 2016 Aug; 120(32):7988-97. PubMed ID: 27459187 [TBL] [Abstract][Full Text] [Related]
2. Adsorption of weak polyelectrolytes on charged nanoparticles. Impact of salt valency, pH, and nanoparticle charge density. Monte Carlo simulations. Carnal F; Stoll S J Phys Chem B; 2011 Oct; 115(42):12007-18. PubMed ID: 21902229 [TBL] [Abstract][Full Text] [Related]
3. Explicit ions condensation around strongly charged polyelectrolytes and spherical macroions: the influence of salt concentration and chain linear charge density. Monte Carlo simulations. Carnal F; Stoll S J Phys Chem A; 2012 Jun; 116(25):6600-8. PubMed ID: 22616671 [TBL] [Abstract][Full Text] [Related]
4. Polypeptide-Nanoparticle Interactions and Corona Formation Investigated by Monte Carlo Simulations. Carnal F; Clavier A; Stoll S Polymers (Basel); 2016 May; 8(6):. PubMed ID: 30979300 [TBL] [Abstract][Full Text] [Related]
5. Effects of surface site distribution and dielectric discontinuity on the charging behavior of nanoparticles: a grand canonical Monte Carlo study. Seijo M; Ulrich S; Filella M; Buffle J; Stoll S Phys Chem Chem Phys; 2006 Dec; 8(48):5679-88. PubMed ID: 17149489 [TBL] [Abstract][Full Text] [Related]
6. Chain stiffness, salt valency, and concentration influences on titration curves of polyelectrolytes: Monte Carlo simulations. Carnal F; Stoll S J Chem Phys; 2011 Jan; 134(4):044909. PubMed ID: 21280800 [TBL] [Abstract][Full Text] [Related]
7. Modeling the surface charge evolution of spherical nanoparticles by considering dielectric discontinuity effects at the solid/electrolyte solution interface. Seijo M; Ulrich S; Filella M; Buffle J; Stoll S J Colloid Interface Sci; 2008 Jun; 322(2):660-8. PubMed ID: 18387618 [TBL] [Abstract][Full Text] [Related]
8. Surface charging behavior of nanoparticles by considering site distribution and density, dielectric constant and pH changes--a Monte Carlo approach. Clavier A; Seijo M; Carnal F; Stoll S Phys Chem Chem Phys; 2015 Feb; 17(6):4346-53. PubMed ID: 25579770 [TBL] [Abstract][Full Text] [Related]
9. Variational approach for electrolyte solutions: from dielectric interfaces to charged nanopores. Buyukdagli S; Manghi M; Palmeri J Phys Rev E Stat Nonlin Soft Matter Phys; 2010 Apr; 81(4 Pt 1):041601. PubMed ID: 20481729 [TBL] [Abstract][Full Text] [Related]
10. Insights from Monte Carlo simulations on charge inversion of planar electric double layers in mixtures of asymmetric electrolytes. Wang ZY; Ma YQ J Chem Phys; 2010 Aug; 133(6):064704. PubMed ID: 20707583 [TBL] [Abstract][Full Text] [Related]
11. Charged Nanoparticle Attraction in Multivalent Salt Solution: A Classical-Fluids Density Functional Theory and Molecular Dynamics Study. Salerno KM; Frischknecht AL; Stevens MJ J Phys Chem B; 2016 Jul; 120(26):5927-37. PubMed ID: 27057763 [TBL] [Abstract][Full Text] [Related]
12. Molecular dynamics studies of aqueous silica nanoparticle dispersions: salt effects on the double layer formation. de Lara LS; Rigo VA; Michelon MF; Metin CO; Nguyen QP; Miranda CR J Phys Condens Matter; 2015 Aug; 27(32):325101. PubMed ID: 26194994 [TBL] [Abstract][Full Text] [Related]
13. Effective interaction between charged nanoparticles and DNA. Paillusson F; Dahirel V; Jardat M; Victor JM; Barbi M Phys Chem Chem Phys; 2011 Jul; 13(27):12603-13. PubMed ID: 21670822 [TBL] [Abstract][Full Text] [Related]
14. Impact of head group charges, ionic sizes, and dielectric images on charge inversion: a Monte Carlo simulation study. Wang ZY; Ma YQ J Phys Chem B; 2010 Oct; 114(42):13386-92. PubMed ID: 20925354 [TBL] [Abstract][Full Text] [Related]
15. Polarization effects of dielectric nanoparticles in aqueous charge-asymmetric electrolytes. Guerrero García GI; Olvera de la Cruz M J Phys Chem B; 2014 Jul; 118(29):8854-62. PubMed ID: 24953671 [TBL] [Abstract][Full Text] [Related]
16. Electrostatic origins of polyelectrolyte adsorption: Theory and Monte Carlo simulations. Wang L; Liang H; Wu J J Chem Phys; 2010 Jul; 133(4):044906. PubMed ID: 20687685 [TBL] [Abstract][Full Text] [Related]
17. Influence of the shell thickness and charge distribution on the effective interaction between two like-charged hollow spheres. Angelescu DG; Caragheorgheopol D J Chem Phys; 2015 Oct; 143(14):144902. PubMed ID: 26472393 [TBL] [Abstract][Full Text] [Related]
18. Temperature-sensitive nanogels in the presence of salt: explicit coarse-grained simulations. Quesada-Pérez M; Ahualli S; Martín-Molina A J Chem Phys; 2014 Sep; 141(12):124903. PubMed ID: 25273470 [TBL] [Abstract][Full Text] [Related]
19. Polyelectrolyte adsorption onto like-charged surfaces mediated by trivalent counterions: a Monte Carlo simulation study. Luque-Caballero G; Martín-Molina A; Quesada-Pérez M J Chem Phys; 2014 May; 140(17):174701. PubMed ID: 24811649 [TBL] [Abstract][Full Text] [Related]
20. A semi-grand canonical Monte Carlo simulation model for ion binding to ionizable surfaces: proton binding of carboxylated latex particles as a case study. Madurga S; Rey-Castro C; Pastor I; Vilaseca E; David C; Garcés JL; Puy J; Mas F J Chem Phys; 2011 Nov; 135(18):184103. PubMed ID: 22088048 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]