BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 27459348)

  • 41. Asthma Phenotypes as a Guide for Current and Future Biologic Therapies.
    Hamilton D; Lehman H
    Clin Rev Allergy Immunol; 2020 Oct; 59(2):160-174. PubMed ID: 31359247
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Asthma phenotyping: a necessity for improved therapeutic precision and new targeted therapies.
    Chung KF
    J Intern Med; 2016 Feb; 279(2):192-204. PubMed ID: 26076339
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Targeted anti-IL-13 therapies in asthma: current data and future perspectives.
    Ntontsi P; Papathanassiou E; Loukides S; Bakakos P; Hillas G
    Expert Opin Investig Drugs; 2018 Feb; 27(2):179-186. PubMed ID: 29334288
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Targeting key proximal drivers of type 2 inflammation in disease.
    Gandhi NA; Bennett BL; Graham NM; Pirozzi G; Stahl N; Yancopoulos GD
    Nat Rev Drug Discov; 2016 Jan; 15(1):35-50. PubMed ID: 26471366
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Role of periostin, FENO, IL-13, lebrikzumab, other IL-13 antagonist and dual IL-4/IL-13 antagonist in asthma.
    Agrawal S; Townley RG
    Expert Opin Biol Ther; 2014 Feb; 14(2):165-81. PubMed ID: 24283478
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Peripheral blood CD4 but not CD8 t-lymphocytes in patients with exacerbation of asthma transcribe and translate messenger RNA encoding cytokines which prolong eosinophil survival in the context of a Th2-type pattern: effect of glucocorticoid therapy.
    Corrigan CJ; Hamid Q; North J; Barkans J; Moqbel R; Durham S; Gemou-Engesaeth V; Kay AB
    Am J Respir Cell Mol Biol; 1995 May; 12(5):567-78. PubMed ID: 7742019
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Biologic therapy in asthma: entering the new age of personalized medicine.
    Fajt ML; Wenzel SE
    J Asthma; 2014 Sep; 51(7):669-76. PubMed ID: 24712500
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Role of biologics targeting type 2 airway inflammation in asthma: what have we learned so far?
    Parulekar AD; Diamant Z; Hanania NA
    Curr Opin Pulm Med; 2017 Jan; 23(1):3-11. PubMed ID: 27820746
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Basophil-derived interleukin-4 controls the function of natural helper cells, a member of ILC2s, in lung inflammation.
    Motomura Y; Morita H; Moro K; Nakae S; Artis D; Endo TA; Kuroki Y; Ohara O; Koyasu S; Kubo M
    Immunity; 2014 May; 40(5):758-71. PubMed ID: 24837103
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Benralizumab--a humanized mAb to IL-5Rα with enhanced antibody-dependent cell-mediated cytotoxicity--a novel approach for the treatment of asthma.
    Ghazi A; Trikha A; Calhoun WJ
    Expert Opin Biol Ther; 2012 Jan; 12(1):113-8. PubMed ID: 22136436
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Safety profile, pharmacokinetics, and biologic activity of MEDI-563, an anti-IL-5 receptor alpha antibody, in a phase I study of subjects with mild asthma.
    Busse WW; Katial R; Gossage D; Sari S; Wang B; Kolbeck R; Coyle AJ; Koike M; Spitalny GL; Kiener PA; Geba GP; Molfino NA
    J Allergy Clin Immunol; 2010 Jun; 125(6):1237-1244.e2. PubMed ID: 20513521
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Anti-alarmins in asthma: targeting the airway epithelium with next-generation biologics.
    Porsbjerg CM; Sverrild A; Lloyd CM; Menzies-Gow AN; Bel EH
    Eur Respir J; 2020 Nov; 56(5):. PubMed ID: 32586879
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Prospects for new and emerging therapeutics in severe asthma: the role of biologics.
    Kepil Özdemir S; Bavbek S
    Expert Rev Respir Med; 2017 Jun; 11(6):505-512. PubMed ID: 28464704
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dupilumab utility in difficult-to-treat asthma.
    M Walsh G
    Immunotherapy; 2019 Mar; 11(4):261-264. PubMed ID: 30678554
    [No Abstract]   [Full Text] [Related]  

  • 55. Future biologic therapies in asthma.
    Quirce S; Bobolea I; Domínguez-Ortega J; Barranco P
    Arch Bronconeumol; 2014 Aug; 50(8):355-61. PubMed ID: 24685200
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Stratified medicine in selecting biologics for the treatment of severe asthma.
    Morjaria JB; Proiti M; Polosa R
    Curr Opin Allergy Clin Immunol; 2011 Feb; 11(1):58-63. PubMed ID: 21150434
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Rationale and clinical results of inhibiting interleukin-5 for the treatment of severe asthma.
    Berair R; Pavord ID
    Curr Allergy Asthma Rep; 2013 Oct; 13(5):469-76. PubMed ID: 23904099
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia.
    Nair P; Pizzichini MM; Kjarsgaard M; Inman MD; Efthimiadis A; Pizzichini E; Hargreave FE; O'Byrne PM
    N Engl J Med; 2009 Mar; 360(10):985-93. PubMed ID: 19264687
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Advancing Care in Severe Asthma: The Art of Switching Biologics.
    Dragonieri S; Portacci A; Quaranta VN; Carpagnano GE
    Adv Respir Med; 2024 Feb; 92(2):110-122. PubMed ID: 38525773
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A review of treatment with mepolizumab, an anti-IL-5 mAb, in hypereosinophilic syndromes and asthma.
    Busse WW; Ring J; Huss-Marp J; Kahn JE
    J Allergy Clin Immunol; 2010 Apr; 125(4):803-13. PubMed ID: 20371394
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.