These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

146 related articles for article (PubMed ID: 27459500)

  • 1. Muscle-tendon unit scaling methods of Hill-type musculoskeletal models: An overview.
    Heinen F; Lund ME; Rasmussen J; de Zee M
    Proc Inst Mech Eng H; 2016 Oct; 230(10):976-84. PubMed ID: 27459500
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Estimation of musculotendon parameters for scaled and subject specific musculoskeletal models using an optimization technique.
    Modenese L; Ceseracciu E; Reggiani M; Lloyd DG
    J Biomech; 2016 Jan; 49(2):141-8. PubMed ID: 26776930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of different analytical methods for subject-specific scaling of musculotendon parameters.
    Winby CR; Lloyd DG; Kirk TB
    J Biomech; 2008; 41(8):1682-8. PubMed ID: 18456272
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrasound-based subject-specific parameters improve fascicle behaviour estimation in Hill-type muscle model.
    Gerus P; Rao G; Berton E
    Comput Methods Biomech Biomed Engin; 2015; 18(2):116-23. PubMed ID: 23520994
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experiment-guided tuning of muscle-tendon parameters to estimate muscle fiber lengths and passive forces.
    Luis I; Afschrift M; Gutierrez-Farewik EM
    Sci Rep; 2024 Jun; 14(1):14652. PubMed ID: 38918538
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved Hill-type musculotendon models with activation-force-length coupling.
    Sun L; Sun Y; Huang Z; Hou J; Wu J
    Technol Health Care; 2018; 26(6):909-920. PubMed ID: 29914041
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new method for estimating subject-specific muscle-tendon parameters of the knee joint actuators: a simulation study.
    Van Campen A; Pipeleers G; De Groote F; Jonkers I; De Schutter J
    Int J Numer Method Biomed Eng; 2014 Oct; 30(10):969-87. PubMed ID: 24753493
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of the validity of Hill and Huxley muscle-tendon complex models using experimental data obtained from rat m. soleus in situ.
    Lemaire KK; Baan GC; Jaspers RT; van Soest AJ
    J Exp Biol; 2016 Apr; 219(Pt 7):977-87. PubMed ID: 26896546
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upper limb strength estimation of physically impaired persons using a musculoskeletal model: A sensitivity analysis.
    Carmichael MG; Liu D
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2438-41. PubMed ID: 26736786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of the efforts to develop muscle and musculoskeletal models for biomechanics in the last 50 years.
    Wakeling JM; Febrer-Nafría M; De Groote F
    J Biomech; 2023 Jun; 155():111657. PubMed ID: 37285780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sensitivity of subject-specific models to Hill muscle-tendon model parameters in simulations of gait.
    Carbone V; van der Krogt MM; Koopman HFJM; Verdonschot N
    J Biomech; 2016 Jun; 49(9):1953-1960. PubMed ID: 27131851
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accuracy of muscle moment arms estimated from MRI-based musculoskeletal models of the lower extremity.
    Arnold AS; Salinas S; Asakawa DJ; Delp SL
    Comput Aided Surg; 2000; 5(2):108-19. PubMed ID: 10862133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A practical biomechanical model of the index finger simulating the kinematics of the muscle/tendon excursions.
    Wu JZ; An KN; Cutlip RG; Dong RG
    Biomed Mater Eng; 2010; 20(2):89-97. PubMed ID: 20592446
    [TBL] [Abstract][Full Text] [Related]  

  • 14. American Society of Biomechanics Journal of Biomechanics Award 2022: Computer models do not accurately predict human muscle passive muscle force and fiber length: Evaluating subject-specific modeling impact on musculoskeletal model predictions.
    Persad LS; Binder-Markey BI; Shin AY; Lieber RL; Kaufman KR
    J Biomech; 2023 Oct; 159():111798. PubMed ID: 37713970
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Musculotendon Parameters in Lower Limb Models: Simplifications, Uncertainties, and Muscle Force Estimation Sensitivity.
    Chen Z; Franklin DW
    Ann Biomed Eng; 2023 Jun; 51(6):1147-1164. PubMed ID: 36913088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An EMG-driven model of the upper extremity and estimation of long head biceps force.
    Langenderfer J; LaScalza S; Mell A; Carpenter JE; Kuhn JE; Hughes RE
    Comput Biol Med; 2005 Jan; 35(1):25-39. PubMed ID: 15567350
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A three-dimensional musculoskeletal model of the chimpanzee (Pan troglodytes) pelvis and hind limb.
    O'Neill MC; Lee LF; Larson SG; Demes B; Stern JT; Umberger BR
    J Exp Biol; 2013 Oct; 216(Pt 19):3709-23. PubMed ID: 24006347
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sensitivity of model predictions of muscle function to changes in moment arms and muscle-tendon properties: a Monte-Carlo analysis.
    Ackland DC; Lin YC; Pandy MG
    J Biomech; 2012 May; 45(8):1463-71. PubMed ID: 22507351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-frequency oscillations as a consequence of neglected serial damping in Hill-type muscle models.
    Günther M; Schmitt S; Wank V
    Biol Cybern; 2007 Jul; 97(1):63-79. PubMed ID: 17598125
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A model of muscle-tendon function in human walking at self-selected speed.
    Endo K; Herr H
    IEEE Trans Neural Syst Rehabil Eng; 2014 Mar; 22(2):352-62. PubMed ID: 24608689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.