These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 27459537)

  • 41. Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis.
    Svegliati-Baroni G; Saccomanno S; Rychlicki C; Agostinelli L; De Minicis S; Candelaresi C; Faraci G; Pacetti D; Vivarelli M; Nicolini D; Garelli P; Casini A; Manco M; Mingrone G; Risaliti A; Frega GN; Benedetti A; Gastaldelli A
    Liver Int; 2011 Oct; 31(9):1285-97. PubMed ID: 21745271
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Glucagon-like peptide-1 receptor agonist exenatide has no acute effect on MRI-measured exocrine pancreatic function in patients with type 2 diabetes: a randomized trial.
    Smits MM; Tonneijck L; Muskiet MH; Kramer MH; Diamant M; Pieters-van den Bos IC; van Raalte DH; Cahen DL
    Diabetes Obes Metab; 2016 Mar; 18(3):281-8. PubMed ID: 26640129
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Proteomic analysis of INS-1 rat insulinoma cells: ER stress effects and the protective role of exenatide, a GLP-1 receptor agonist.
    Kim MK; Cho JH; Lee JJ; Son MH; Lee KJ
    PLoS One; 2015; 10(3):e0120536. PubMed ID: 25793496
    [TBL] [Abstract][Full Text] [Related]  

  • 44. No cognitive-enhancing effect of GLP-1 receptor agonism in antipsychotic-treated, obese patients with schizophrenia.
    Ishøy PL; Fagerlund B; Broberg BV; Bak N; Knop FK; Glenthøj BY; Ebdrup BH
    Acta Psychiatr Scand; 2017 Jul; 136(1):52-62. PubMed ID: 28260235
    [TBL] [Abstract][Full Text] [Related]  

  • 45. A novel CISD2 mutation associated with a classical Wolfram syndrome phenotype alters Ca2+ homeostasis and ER-mitochondria interactions.
    Rouzier C; Moore D; Delorme C; Lacas-Gervais S; Ait-El-Mkadem S; Fragaki K; Burté F; Serre V; Bannwarth S; Chaussenot A; Catala M; Yu-Wai-Man P; Paquis-Flucklinger V
    Hum Mol Genet; 2017 May; 26(9):1599-1611. PubMed ID: 28335035
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A novel CISD2 intragenic deletion, optic neuropathy and platelet aggregation defect in Wolfram syndrome type 2.
    Mozzillo E; Delvecchio M; Carella M; Grandone E; Palumbo P; Salina A; Aloi C; Buono P; Izzo A; D'Annunzio G; Vecchione G; Orrico A; Genesio R; Simonelli F; Franzese A
    BMC Med Genet; 2014 Jul; 15():88. PubMed ID: 25056293
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Exenatide substantially improves proinsulin conversion and cell survival that augment Ins2
    Tang W; Yuan Q; Xu B; Osei K; Wang J
    Mol Cell Endocrinol; 2017 Jan; 439():297-307. PubMed ID: 27658750
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Generation of Human-Induced Pluripotent Stem Cells from Wolfram Syndrome Type 2 Patients Bearing the c.103 + 1G>A CISD2 Mutation for Disease Modeling.
    La Spada A; Ntai A; Genovese S; Rondinelli M; De Blasio P; Biunno I
    Stem Cells Dev; 2018 Feb; 27(4):287-295. PubMed ID: 29239282
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Exenatide Induces Impairment of Autophagy Flux to Damage Rat Pancreas.
    Li Z; Huang L; Yu X; Yu C; Zhu H; Li X; Han D; Huang H
    Pancreas; 2017 Jan; 46(1):83-88. PubMed ID: 27518464
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Early Intervention and Lifelong Treatment with GLP1 Receptor Agonist Liraglutide in a Wolfram Syndrome Rat Model with an Emphasis on Visual Neurodegeneration, Sensorineural Hearing Loss and Diabetic Phenotype.
    Jagomäe T; Seppa K; Reimets R; Pastak M; Plaas M; Hickey MA; Kukker KG; Moons L; De Groef L; Vasar E; Kaasik A; Terasmaa A; Plaas M
    Cells; 2021 Nov; 10(11):. PubMed ID: 34831417
    [TBL] [Abstract][Full Text] [Related]  

  • 51. GLP-1R agonists demonstrate potential to treat Wolfram syndrome in human preclinical models.
    Gorgogietas V; Rajaei B; Heeyoung C; Santacreu BJ; Marín-Cañas S; Salpea P; Sawatani T; Musuaya A; Arroyo MN; Moreno-Castro C; Benabdallah K; Demarez C; Toivonen S; Cosentino C; Pachera N; Lytrivi M; Cai Y; Carnel L; Brown C; Urano F; Marchetti P; Gilon P; Eizirik DL; Cnop M; Igoillo-Esteve M
    Diabetologia; 2023 Jul; 66(7):1306-1321. PubMed ID: 36995380
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cisd2 deficiency drives premature aging and causes mitochondria-mediated defects in mice.
    Chen YF; Kao CH; Chen YT; Wang CH; Wu CY; Tsai CY; Liu FC; Yang CW; Wei YH; Hsu MT; Tsai SF; Tsai TF
    Genes Dev; 2009 May; 23(10):1183-94. PubMed ID: 19451219
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nutrient-deprivation autophagy factor-1 (NAF-1): biochemical properties of a novel cellular target for anti-diabetic drugs.
    Tamir S; Zuris JA; Agranat L; Lipper CH; Conlan AR; Michaeli D; Harir Y; Paddock ML; Mittler R; Cabantchik ZI; Jennings PA; Nechushtai R
    PLoS One; 2013; 8(5):e61202. PubMed ID: 23717386
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Glycemic variability in patients with Wolfram syndrome is lower than in type 1 diabetes.
    Zmyslowska A; Fendler W; Szadkowska A; Borowiec M; Mysliwiec M; Baranowska-Jazwiecka A; Buraczewska M; Fulmanska-Anders M; Mianowska B; Pietrzak I; Rzeznik D; Mlynarski W
    Acta Diabetol; 2015 Dec; 52(6):1057-62. PubMed ID: 25916214
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Comparative proteomic profiling reveals a role for Cisd2 in skeletal muscle aging.
    Huang YL; Shen ZQ; Wu CY; Teng YC; Liao CC; Kao CH; Chen LK; Lin CH; Tsai TF
    Aging Cell; 2018 Feb; 17(1):. PubMed ID: 29168286
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Wolfram syndrome 2: a novel CISD2 mutation identified in Italian siblings.
    Rondinelli M; Novara F; Calcaterra V; Zuffardi O; Genovese S
    Acta Diabetol; 2015 Feb; 52(1):175-8. PubMed ID: 25371195
    [No Abstract]   [Full Text] [Related]  

  • 57. Disrupting CISD2 function in cancer cells primarily impacts mitochondrial labile iron levels and triggers TXNIP expression.
    Karmi O; Sohn YS; Zandalinas SI; Rowland L; King SD; Nechushtai R; Mittler R
    Free Radic Biol Med; 2021 Nov; 176():92-104. PubMed ID: 34547371
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Elamipretide Promotes Mitophagosome Formation and Prevents Its Reduction Induced by Nutrient Excess in INS1 β-cells.
    Petcherski A; Trudeau KM; Wolf DM; Segawa M; Lee J; Taddeo EP; Deeney JT; Liesa M
    J Mol Biol; 2018 Dec; 430(24):4823-4833. PubMed ID: 30389435
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Insights into pancreatic β cell energy metabolism using rodent β cell models.
    Morten KJ; Potter M; Badder L; Sivathondan P; Dragovic R; Neumann A; Gavin J; Shrestha R; Reilly S; Phadwal K; Lodge TA; Borzychowski A; Cookson S; Mitchell C; Morovat A; Simon AK; Uusimaa J; Hynes J; Poulton J
    Wellcome Open Res; 2017; 2():14. PubMed ID: 31754635
    [No Abstract]   [Full Text] [Related]  

  • 60. The effects of disease-related symptoms on daily function in Wolfram Syndrome.
    Doty T; Foster ER; Marshall B; Ranck S; Hershey T
    Transl Sci Rare Dis; 2017; 2(1-2):89-100. PubMed ID: 29130034
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.