These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

151 related articles for article (PubMed ID: 27459629)

  • 21. Probing the heterogeneous structure of eumelanin using ultrafast vibrational fingerprinting.
    Grieco C; Kohl FR; Hanes AT; Kohler B
    Nat Commun; 2020 Sep; 11(1):4569. PubMed ID: 32917892
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Understanding the Role of Aggregation in the Broad Absorption Bands of Eumelanin.
    Ju KY; Fischer MC; Warren WS
    ACS Nano; 2018 Dec; 12(12):12050-12061. PubMed ID: 30500158
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Synthetic melanin is a model for soluble natural eumelanin in UVA-photosensitised superoxide production.
    Haywood RM; Lee M; Linge C
    J Photochem Photobiol B; 2006 Mar; 82(3):224-35. PubMed ID: 16446096
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Characterization of the Fe(III)-binding site in Sepia eumelanin by resonance Raman confocal microspectroscopy.
    Samokhvalov A; Liu Y; Simon JD
    Photochem Photobiol; 2004; 80():84-8. PubMed ID: 15339213
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Eumelanin fibrils.
    McQueenie R; Sutter J; Karolin J; Birch DJ
    J Biomed Opt; 2012 Jul; 17(7):075001. PubMed ID: 22894473
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The potent pro-oxidant activity of rhododendrol-eumelanin is enhanced by ultraviolet A radiation.
    Ito S; Agata M; Okochi K; Wakamatsu K
    Pigment Cell Melanoma Res; 2018 Jul; 31(4):523-528. PubMed ID: 29474003
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Excitonic effects from geometric order and disorder explain broadband optical absorption in eumelanin.
    Chen CT; Chuang C; Cao J; Ball V; Ruch D; Buehler MJ
    Nat Commun; 2014 May; 5():3859. PubMed ID: 24848640
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Elucidating the Photoprotection Mechanism of Eumelanin Monomers.
    Ghosh P; Ghosh D
    J Phys Chem B; 2017 Jun; 121(24):5988-5994. PubMed ID: 28570058
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Chemical and structural disorder in eumelanins: a possible explanation for broadband absorbance.
    Tran ML; Powell BJ; Meredith P
    Biophys J; 2006 Feb; 90(3):743-52. PubMed ID: 16284264
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Ultrastructural organization of eumelanin from Sepia officinalis measured by atomic force microscopy.
    Clancy CM; Simon JD
    Biochemistry; 2001 Nov; 40(44):13353-60. PubMed ID: 11683645
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of melanin in the induction of oxidative DNA base damage by ultraviolet A irradiation of DNA or melanoma cells.
    Kvam E; Tyrrell RM
    J Invest Dermatol; 1999 Aug; 113(2):209-13. PubMed ID: 10469305
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Isolation and biophysical studies of natural eumelanins: applications of imaging technologies and ultrafast spectroscopy.
    Liu Y; Simon JD
    Pigment Cell Res; 2003 Dec; 16(6):606-18. PubMed ID: 14629718
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A 13C solid-state NMR study of the structure and auto-oxidation process of natural and synthetic melanins.
    Hervé M; Hirschinger J; Granger P; Gilard P; Deflandre A; Goetz N
    Biochim Biophys Acta; 1994 Jan; 1204(1):19-27. PubMed ID: 8305471
    [TBL] [Abstract][Full Text] [Related]  

  • 34. "Fifty Shades" of Black and Red or How Carboxyl Groups Fine Tune Eumelanin and Pheomelanin Properties.
    Micillo R; Panzella L; Koike K; Monfrecola G; Napolitano A; d'Ischia M
    Int J Mol Sci; 2016 May; 17(5):. PubMed ID: 27196900
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Energetics of Radical Formation in Eumelanin Building Blocks: Implications for Understanding Photoprotection Mechanisms in Eumelanin.
    Agapito F; Cabral BJ
    J Phys Chem A; 2016 Dec; 120(50):10018-10022. PubMed ID: 28002950
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Artificial pheomelanin nanoparticles and their photo-sensitization properties.
    Pyo J; Ju KY; Lee JK
    J Photochem Photobiol B; 2016 Jul; 160():330-5. PubMed ID: 27173400
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Self-assembly of tetramers of 5,6-dihydroxyindole explains the primary physical properties of eumelanin: experiment, simulation, and design.
    Chen CT; Ball V; de Almeida Gracio JJ; Singh MK; Toniazzo V; Ruch D; Buehler MJ
    ACS Nano; 2013 Feb; 7(2):1524-32. PubMed ID: 23320483
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Probing eumelanin photoprotection using a catechol:quinone heterodimer model system.
    Grieco C; Empey JM; Kohl FR; Kohler B
    Faraday Discuss; 2019 Jul; 216(0):520-537. PubMed ID: 31012874
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Fingerprint-based deep neural networks can model thermodynamic and optical properties of eumelanin DHI dimers.
    Bosch D; Wang J; Blancafort L
    Chem Sci; 2022 Aug; 13(31):8942-8946. PubMed ID: 36091209
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 5,6-dihydroxyindole tetramers with "anomalous" interunit bonding patterns by oxidative coupling of 5,5',6,6'-tetrahydroxy-2,7'-biindolyl: emerging complexities on the way toward an improved model of eumelanin buildup.
    Pezzella A; Panzella L; Natangelo A; Arzillo M; Napolitano A; d'Ischia M
    J Org Chem; 2007 Nov; 72(24):9225-30. PubMed ID: 17975929
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.