These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

224 related articles for article (PubMed ID: 27459772)

  • 1. Nectar microbes can reduce secondary metabolites in nectar and alter effects on nectar consumption by pollinators.
    Vannette RL; Fukami T
    Ecology; 2016 Jun; 97(6):1410-9. PubMed ID: 27459772
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nectar bacteria, but not yeast, weaken a plant-pollinator mutualism.
    Vannette RL; Gauthier MP; Fukami T
    Proc Biol Sci; 2013 Feb; 280(1752):20122601. PubMed ID: 23222453
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nectar compounds impact bacterial and fungal growth and shift community dynamics in a nectar analog.
    Mueller TG; Francis JS; Vannette RL
    Environ Microbiol Rep; 2023 Jun; 15(3):170-180. PubMed ID: 36779256
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nectar-inhabiting microorganisms influence nectar volatile composition and attractiveness to a generalist pollinator.
    Rering CC; Beck JJ; Hall GW; McCartney MM; Vannette RL
    New Phytol; 2018 Nov; 220(3):750-759. PubMed ID: 28960308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nectar yeasts enhance the interaction between Clematis akebioides and its bumblebee pollinator.
    Yang M; Deng GC; Gong YB; Huang SQ
    Plant Biol (Stuttg); 2019 Jul; 21(4):732-737. PubMed ID: 30636362
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Patterns of floral nectar standing crops allow plants to manipulate their pollinators.
    Pyke GH; Kalman JRM; Bordin DM; Blanes L; Doble PA
    Sci Rep; 2020 Feb; 10(1):1660. PubMed ID: 32015366
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Beyond the pollination syndrome: nectar ecology and the role of diurnal and nocturnal pollinators in the reproductive success of Inga sessilis (Fabaceae).
    Amorim FW; Galetto L; Sazima M
    Plant Biol (Stuttg); 2013 Mar; 15(2):317-27. PubMed ID: 22823072
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of agricultural fungicides on microorganisms associated with floral nectar: susceptibility assays and field experiments.
    Bartlewicz J; Pozo MI; Honnay O; Lievens B; Jacquemyn H
    Environ Sci Pollut Res Int; 2016 Oct; 23(19):19776-86. PubMed ID: 27411538
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Contrasting effects of nectar yeasts on the reproduction of Mediterranean plant species.
    de Vega C; Albaladejo RG; Álvarez-Pérez S; Herrera CM
    Am J Bot; 2022 Mar; 109(3):393-405. PubMed ID: 35315515
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial Co-Occurrence in Floral Nectar Affects Metabolites and Attractiveness to a Generalist Pollinator.
    Rering CC; Vannette RL; Schaeffer RN; Beck JJ
    J Chem Ecol; 2020 Aug; 46(8):659-667. PubMed ID: 32246258
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nectar sugars and amino acids in day- and night-flowering Nicotiana species are more strongly shaped by pollinators' preferences than organic acids and inorganic ions.
    Tiedge K; Lohaus G
    PLoS One; 2017; 12(5):e0176865. PubMed ID: 28467507
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Contrasting effects of yeasts and bacteria on floral nectar traits.
    Vannette RL; Fukami T
    Ann Bot; 2018 Jun; 121(7):1343-1349. PubMed ID: 29562323
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Main sugar composition of floral nectar in three species groups of Scrophularia (Scrophulariaceae) with different principal pollinators.
    Rodríguez-Riaño T; Ortega-Olivencia A; López J; Pérez-Bote JL; Navarro-Pérez ML
    Plant Biol (Stuttg); 2014 Nov; 16(6):1075-86. PubMed ID: 24597898
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The impact of nectar chemical features on phenotypic variation in two related nectar yeasts.
    Pozo MI; Herrera CM; Van den Ende W; Verstrepen K; Lievens B; Jacquemyn H
    FEMS Microbiol Ecol; 2015 Jun; 91(6):. PubMed ID: 25994159
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Wide-ranging consequences of priority effects governed by an overarching factor.
    Chappell CR; Dhami MK; Bitter MC; Czech L; Herrera Paredes S; Barrie FB; Calderón Y; Eritano K; Golden LA; Hekmat-Scafe D; Hsu V; Kieschnick C; Malladi S; Rush N; Fukami T
    Elife; 2022 Oct; 11():. PubMed ID: 36300797
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatio-temporal variation of nectar robbing in Salvia gesneriflora and its effects on nectar production and legitimate visitors.
    Cuevas E; Rosas-Guerrero V
    Plant Biol (Stuttg); 2016 Jan; 18(1):9-14. PubMed ID: 25677960
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Distasteful Nectar Deters Floral Robbery.
    Barlow SE; Wright GA; Ma C; Barberis M; Farrell IW; Marr EC; Brankin A; Pavlik BM; Stevenson PC
    Curr Biol; 2017 Aug; 27(16):2552-2558.e3. PubMed ID: 28803876
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Yeast-nectar interactions: metacommunities and effects on pollinators.
    Jacquemyn H; Pozo MI; Álvarez-Pérez S; Lievens B; Fukami T
    Curr Opin Insect Sci; 2021 Apr; 44():35-40. PubMed ID: 33065340
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Population growth of the floricolous yeast Metschnikowia reukaufii: effects of nectar host, yeast genotype, and host × genotype interaction.
    Herrera CM
    FEMS Microbiol Ecol; 2014 May; 88(2):250-7. PubMed ID: 24512559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heavy metals in nectar modify behaviors of pollinators and nectar robbers: Consequences for plant fitness.
    Xun E; Zhang Y; Zhao J; Guo J
    Environ Pollut; 2018 Nov; 242(Pt B):1166-1175. PubMed ID: 30114599
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.