These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 27459846)

  • 1. Ensembles of randomized trees using diverse distributed representations of clinical events.
    Henriksson A; Zhao J; Dalianis H; Boström H
    BMC Med Inform Decis Mak; 2016 Jul; 16 Suppl 2(Suppl 2):69. PubMed ID: 27459846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predictive modeling of structured electronic health records for adverse drug event detection.
    Zhao J; Henriksson A; Asker L; Boström H
    BMC Med Inform Decis Mak; 2015; 15 Suppl 4(Suppl 4):S1. PubMed ID: 26606038
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Learning temporal weights of clinical events using variable importance.
    Zhao J; Henriksson A
    BMC Med Inform Decis Mak; 2016 Jul; 16 Suppl 2(Suppl 2):71. PubMed ID: 27459993
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Semi-supervised medical entity recognition: A study on Spanish and Swedish clinical corpora.
    Pérez A; Weegar R; Casillas A; Gojenola K; Oronoz M; Dalianis H
    J Biomed Inform; 2017 Jul; 71():16-30. PubMed ID: 28526460
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identifying adverse drug event information in clinical notes with distributional semantic representations of context.
    Henriksson A; Kvist M; Dalianis H; Duneld M
    J Biomed Inform; 2015 Oct; 57():333-49. PubMed ID: 26291578
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Learning multiple distributed prototypes of semantic categories for named entity recognition.
    Henriksson A
    Int J Data Min Bioinform; 2015; 13(4):395-411. PubMed ID: 26547986
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pharmacovigilance from social media: An improved random subspace method for identifying adverse drug events.
    Liu J; Wang G
    Int J Med Inform; 2018 Sep; 117():33-43. PubMed ID: 30032963
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Leveraging graph topology and semantic context for pharmacovigilance through twitter-streams.
    Eshleman R; Singh R
    BMC Bioinformatics; 2016 Oct; 17(Suppl 13):335. PubMed ID: 27766937
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Learning predictive models of drug side-effect relationships from distributed representations of literature-derived semantic predications.
    Mower J; Subramanian D; Cohen T
    J Am Med Inform Assoc; 2018 Oct; 25(10):1339-1350. PubMed ID: 30010902
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An ensemble method for extracting adverse drug events from social media.
    Liu J; Zhao S; Zhang X
    Artif Intell Med; 2016 Jun; 70():62-76. PubMed ID: 27431037
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stable feature selection for clinical prediction: exploiting ICD tree structure using Tree-Lasso.
    Kamkar I; Gupta SK; Phung D; Venkatesh S
    J Biomed Inform; 2015 Feb; 53():277-90. PubMed ID: 25500636
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pharmacovigilance from social media: mining adverse drug reaction mentions using sequence labeling with word embedding cluster features.
    Nikfarjam A; Sarker A; O'Connor K; Ginn R; Gonzalez G
    J Am Med Inform Assoc; 2015 May; 22(3):671-81. PubMed ID: 25755127
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Learning from heterogeneous temporal data in electronic health records.
    Zhao J; Papapetrou P; Asker L; Boström H
    J Biomed Inform; 2017 Jan; 65():105-119. PubMed ID: 27919732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tree Ensembles on the Induced Discrete Space.
    Yildiz OT
    IEEE Trans Neural Netw Learn Syst; 2016 May; 27(5):1108-13. PubMed ID: 26011897
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Redundancy in perceptual and linguistic experience: comparing feature-based and distributional models of semantic representation.
    Riordan B; Jones MN
    Top Cogn Sci; 2011 Apr; 3(2):303-45. PubMed ID: 25164298
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparison of 2 Natural Language Processing Methods for Identification of Bleeding Among Critically Ill Patients.
    Taggart M; Chapman WW; Steinberg BA; Ruckel S; Pregenzer-Wenzler A; Du Y; Ferraro J; Bucher BT; Lloyd-Jones DM; Rondina MT; Shah RU
    JAMA Netw Open; 2018 Oct; 1(6):e183451. PubMed ID: 30646240
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Drug-target interaction prediction with tree-ensemble learning and output space reconstruction.
    Pliakos K; Vens C
    BMC Bioinformatics; 2020 Feb; 21(1):49. PubMed ID: 32033537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Deep Patient: An Unsupervised Representation to Predict the Future of Patients from the Electronic Health Records.
    Miotto R; Li L; Kidd BA; Dudley JT
    Sci Rep; 2016 May; 6():26094. PubMed ID: 27185194
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Automated data extraction and ensemble methods for predictive modeling of breast cancer outcomes after radiation therapy.
    Lindsay WD; Ahern CA; Tobias JS; Berlind CG; Chinniah C; Gabriel PE; Gee JC; Simone CB
    Med Phys; 2019 Feb; 46(2):1054-1063. PubMed ID: 30499597
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improving Diagnostics with Deep Forest Applied to Electronic Health Records.
    Khodadadi A; Ghanbari Bousejin N; Molaei S; Kumar Chauhan V; Zhu T; Clifton DA
    Sensors (Basel); 2023 Jul; 23(14):. PubMed ID: 37514865
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.