These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

289 related articles for article (PubMed ID: 27459885)

  • 1. In-tube collision-induced dissociation for selected ion flow-drift tube mass spectrometry, SIFDT-MS: a case study of NO(+) reactions with isomeric monoterpenes.
    Spesyvyi A; Sovová K; Španěl P
    Rapid Commun Mass Spectrom; 2016 Sep; 30(18):2009-16. PubMed ID: 27459885
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of residence times of ions in a resistive glass selected ion flow-drift tube using the Hadamard transformation.
    Spesyvyi A; Španěl P
    Rapid Commun Mass Spectrom; 2015 Sep; 29(17):1563-1570. PubMed ID: 28339157
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrostatic Switching and Selection of H
    Španěl P; Spesyvyi A; Smith D
    Anal Chem; 2019 Apr; 91(8):5380-5388. PubMed ID: 30869870
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Styrene radical cations for chemical ionization mass spectrometry analyses of monoterpene hydrocarbons.
    Spesyvyi A; Španěl P; Sovová K
    Rapid Commun Mass Spectrom; 2019 Dec; 33(24):1870-1876. PubMed ID: 31418494
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Selected Ion Flow-Drift Tube Mass Spectrometry: Quantification of Volatile Compounds in Air and Breath.
    Spesyvyi A; Smith D; Španěl P
    Anal Chem; 2015 Dec; 87(24):12151-60. PubMed ID: 26583448
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ion chemistry at elevated ion-molecule interaction energies in a selected ion flow-drift tube: reactions of H
    Spesyvyi A; Smith D; Španěl P
    Phys Chem Chem Phys; 2017 Dec; 19(47):31714-31723. PubMed ID: 29165483
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetics of reactions of NH
    Swift SJ; Smith D; Dryahina K; Gnioua MO; Španěl P
    Rapid Commun Mass Spectrom; 2022 Aug; 36(15):e9328. PubMed ID: 35603529
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Monoterpene separation by coupling proton transfer reaction time-of-flight mass spectrometry with fastGC.
    Materić D; Lanza M; Sulzer P; Herbig J; Bruhn D; Turner C; Mason N; Gauci V
    Anal Bioanal Chem; 2015 Oct; 407(25):7757-63. PubMed ID: 26253230
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Selected ion flow tube study of the reactions of H
    Španěl P; Žabka J; Zymak I; Smith D
    Rapid Commun Mass Spectrom; 2017 Mar; 31(5):437-446. PubMed ID: 27983765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Collisional activation of peptide ions in FT-ICR mass spectrometry.
    Laskin J; Futrell JH
    Mass Spectrom Rev; 2003; 22(3):158-81. PubMed ID: 12838543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Gas-phase fragmentation study of novel synthetic 1,5-benzodiazepine derivatives using electrospray ionization tandem mass spectrometry.
    Rida M; El Meslouhi H; Es-Safi NE; Essassi el M; Banoub J
    Rapid Commun Mass Spectrom; 2008 Jul; 22(14):2253-68. PubMed ID: 18561279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tautomerization in gas-phase ion chemistry of isomeric C-8 deoxyguanosine adducts from phenol-induced DNA damage.
    Sagoo S; Beach DG; Manderville RA; Gabryelski W
    J Mass Spectrom; 2011 Jan; 46(1):41-9. PubMed ID: 21184435
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Chemical ionization by [NO]+ and subsequent collision-induced dissociation for the selective on-line detection of monoterpenes and linalool.
    Rimetz-Planchon J; Dhooghe F; Schoon N; Vanhaecke F; Amelynck C
    Rapid Commun Mass Spectrom; 2011 Mar; 25(5):647-54. PubMed ID: 21294204
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Proton transfer reaction ion trap mass spectrometer.
    Prazeller P; Palmer PT; Boscaini E; Jobson T; Alexander M
    Rapid Commun Mass Spectrom; 2003; 17(14):1593-9. PubMed ID: 12845585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion trap versus low-energy beam-type collision-induced dissociation of protonated ubiquitin ions.
    Xia Y; Liang X; McLuckey SA
    Anal Chem; 2006 Feb; 78(4):1218-27. PubMed ID: 16478115
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ion activation methods for tandem mass spectrometry.
    Sleno L; Volmer DA
    J Mass Spectrom; 2004 Oct; 39(10):1091-112. PubMed ID: 15481084
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Axial spatial distribution focusing: improving MALDI-TOF/RTOF mass spectrometric performance for high-energy collision-induced dissociation of biomolecules.
    Belgacem O; Pittenauer E; Openshaw ME; Hart PJ; Bowdler A; Allmaier G
    Rapid Commun Mass Spectrom; 2016 Feb; 30(3):343-51. PubMed ID: 26754126
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural elucidation of monoterpene oxidation products by ion trap fragmentation using on-line atmospheric pressure chemical ionisation mass spectrometry in the negative ion mode.
    Warscheid B; Hoffmann T
    Rapid Commun Mass Spectrom; 2001; 15(23):2259-72. PubMed ID: 11746892
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differential Fragmentation of Mobility-Selected Glycans via Ultraviolet Photodissociation and Ion Mobility-Mass Spectrometry.
    Morrison KA; Clowers BH
    J Am Soc Mass Spectrom; 2017 Jun; 28(6):1236-1241. PubMed ID: 28421405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The in situ gas-phase formation of a C-glycoside ion obtained during electrospray ionization tandem mass spectrometry. A unique intramolecular mechanism involving an ion-molecule reaction.
    Banoub JH; Demian WL; Piazzetta P; Sarkis G; Kanawati B; Lafont D; Laurent N; Vaillant C; Randell E; Giorgi G; Fridgen TD
    Rapid Commun Mass Spectrom; 2015 Oct; 29(19):1717-32. PubMed ID: 26331922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.