BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

546 related articles for article (PubMed ID: 27460079)

  • 1. Oxystressed tumor microenvironment potentiates epithelial to mesenchymal transition and alters cellular bioenergetics towards cancer progression.
    Sridaran D; Ramamoorthi G; MahaboobKhan R; Kumpati P
    Tumour Biol; 2016 Oct; 37(10):13307-13322. PubMed ID: 27460079
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metabolic Reprogramming and Dependencies Associated with Epithelial Cancer Stem Cells Independent of the Epithelial-Mesenchymal Transition Program.
    Aguilar E; Marin de Mas I; Zodda E; Marin S; Morrish F; Selivanov V; Meca-Cortés Ó; Delowar H; Pons M; Izquierdo I; Celià-Terrassa T; de Atauri P; Centelles JJ; Hockenbery D; Thomson TM; Cascante M
    Stem Cells; 2016 May; 34(5):1163-76. PubMed ID: 27146024
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular Pathways Mediating Metastases to the Brain via Epithelial-to-Mesenchymal Transition: Genes, Proteins, and Functional Analysis.
    Jeevan DS; Cooper JB; Braun A; Murali R; Jhanwar-Uniyal M
    Anticancer Res; 2016 Feb; 36(2):523-32. PubMed ID: 26851006
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor microenvironment and noncoding RNAs as co-drivers of epithelial-mesenchymal transition and cancer metastasis.
    Drak Alsibai K; Meseure D
    Dev Dyn; 2018 Mar; 247(3):405-431. PubMed ID: 28691356
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EMT and oxidative stress: a bidirectional interplay affecting tumor malignancy.
    Giannoni E; Parri M; Chiarugi P
    Antioxid Redox Signal; 2012 Jun; 16(11):1248-63. PubMed ID: 21929373
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gap junction as an intercellular glue: Emerging roles in cancer EMT and metastasis.
    Mao XY; Li QQ; Gao YF; Zhou HH; Liu ZQ; Jin WL
    Cancer Lett; 2016 Oct; 381(1):133-7. PubMed ID: 27490999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Epithelial-Mesenchymal Transition at the Crossroads between Metabolism and Tumor Progression.
    Fedele M; Sgarra R; Battista S; Cerchia L; Manfioletti G
    Int J Mol Sci; 2022 Jan; 23(2):. PubMed ID: 35054987
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Immunological Consequences of Epithelial-Mesenchymal Transition in Tumor Progression.
    Chockley PJ; Keshamouni VG
    J Immunol; 2016 Aug; 197(3):691-8. PubMed ID: 27431984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nitric oxide and interactions with reactive oxygen species in the development of melanoma, breast, and colon cancer: A redox signaling perspective.
    Monteiro HP; Rodrigues EG; Amorim Reis AKC; Longo LS; Ogata FT; Moretti AIS; da Costa PE; Teodoro ACS; Toledo MS; Stern A
    Nitric Oxide; 2019 Aug; 89():1-13. PubMed ID: 31009708
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catabolic metabolism during cancer EMT.
    Cha YH; Yook JI; Kim HS; Kim NH
    Arch Pharm Res; 2015 Mar; 38(3):313-20. PubMed ID: 25634102
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The tumor microenvironment: An irreplaceable element of tumor budding and epithelial-mesenchymal transition-mediated cancer metastasis.
    Li H; Xu F; Li S; Zhong A; Meng X; Lai M
    Cell Adh Migr; 2016 Jul; 10(4):434-46. PubMed ID: 26743180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Epithelial-mesenchymal transition induces similar metabolic alterations in two independent breast cancer cell lines.
    Kondaveeti Y; Guttilla Reed IK; White BA
    Cancer Lett; 2015 Aug; 364(1):44-58. PubMed ID: 25917568
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of stromal cell components of tumor microenvironment on epithelial-mesenchymal transition in breast cancer cells.
    Bezdenezhnykh N; Semesiuk N; Lykhova O; Zhylchuk V; Kudryavets Y
    Exp Oncol; 2014 Jun; 36(2):72-8. PubMed ID: 24980759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tumor and its microenvironment: a synergistic interplay.
    Catalano V; Turdo A; Di Franco S; Dieli F; Todaro M; Stassi G
    Semin Cancer Biol; 2013 Dec; 23(6 Pt B):522-32. PubMed ID: 24012661
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metabolic reprogramming: the emerging concept and associated therapeutic strategies.
    Yoshida GJ
    J Exp Clin Cancer Res; 2015 Oct; 34():111. PubMed ID: 26445347
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of oxidized ATM in the regulation of oxidative stress-induced energy metabolism reprogramming of CAFs.
    Tang S; Yang L; Tang X; Liu M
    Cancer Lett; 2014 Oct; 353(2):133-44. PubMed ID: 25069040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. MicroRNA-661 modulates redox and metabolic homeostasis in colon cancer.
    Gómez de Cedrón M; Acín Pérez R; Sánchez-Martínez R; Molina S; Herranz J; Feliu J; Reglero G; Enríquez JA; Ramírez de Molina A
    Mol Oncol; 2017 Dec; 11(12):1768-1787. PubMed ID: 28981199
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrogen peroxide-producing NADPH oxidases and the promotion of migratory phenotypes in cancer.
    Meitzler JL; Konaté MM; Doroshow JH
    Arch Biochem Biophys; 2019 Oct; 675():108076. PubMed ID: 31415727
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CCL21/CCR7 Axis Contributed to CD133+ Pancreatic Cancer Stem-Like Cell Metastasis via EMT and Erk/NF-κB Pathway.
    Zhang L; Wang D; Li Y; Liu Y; Xie X; Wu Y; Zhou Y; Ren J; Zhang J; Zhu H; Su Z
    PLoS One; 2016; 11(8):e0158529. PubMed ID: 27505247
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Treatment with insulin-like growth factor 1 receptor inhibitor reverses hypoxia-induced epithelial-mesenchymal transition in non-small cell lung cancer.
    Nurwidya F; Takahashi F; Kobayashi I; Murakami A; Kato M; Minakata K; Nara T; Hashimoto M; Yagishita S; Baskoro H; Hidayat M; Shimada N; Takahashi K
    Biochem Biophys Res Commun; 2014 Dec; 455(3-4):332-8. PubMed ID: 25446090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 28.