These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 27460247)

  • 21. Validation of a Plasmodium falciparum parasite transformed with green fluorescent protein for antimalarial drug screening.
    Sanchez BA; Varotti FP; Rodrigues FG; Carvalho LH
    J Microbiol Methods; 2007 Jun; 69(3):518-22. PubMed ID: 17466399
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Measuring Plasmodium falciparum Erythrocyte Invasion Phenotypes Using Flow Cytometry.
    Bei AK; Duraisingh MT
    Methods Mol Biol; 2015; 1325():167-86. PubMed ID: 26450388
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ellagic Acid Induces in vitro Alkalinisation of the Digestive Vacuole in Drug-Sensitive Plasmodium falciparum Strain.
    Muchtar NH; Nik Mat Zin NNI; Mohamad FS; Abu-Bakar N
    Malays J Med Sci; 2022 Aug; 29(4):43-52. PubMed ID: 36101540
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-throughput Plasmodium falciparum growth assay for malaria drug discovery.
    Baniecki ML; Wirth DF; Clardy J
    Antimicrob Agents Chemother; 2007 Feb; 51(2):716-23. PubMed ID: 17116676
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Plasmodium falciparum-infected red blood cell.
    Tilley L; Dixon MW; Kirk K
    Int J Biochem Cell Biol; 2011 Jun; 43(6):839-42. PubMed ID: 21458590
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Reevaluation of flow cytometry for investigating antibody binding to the surface of Plasmodium falciparum trophozoite-infected red blood cells.
    Williams TN; Newbold CI
    Cytometry A; 2003 Dec; 56(2):96-103. PubMed ID: 14608637
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Digestive-vacuole genesis and endocytic processes in the early intraerythrocytic stages of Plasmodium falciparum.
    Abu Bakar N; Klonis N; Hanssen E; Chan C; Tilley L
    J Cell Sci; 2010 Feb; 123(Pt 3):441-50. PubMed ID: 20067995
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Double-drug development against antioxidant enzymes from Plasmodium falciparum.
    Biot C; Dessolin J; Grellier P; Davioud-Charvet E
    Redox Rep; 2003; 8(5):280-3. PubMed ID: 14962365
    [TBL] [Abstract][Full Text] [Related]  

  • 29. In vitro antimalarial activity of metalloporphyrins against Plasmodium falciparum.
    Begum K; Kim HS; Kumar V; Stojiljkovic I; Wataya Y
    Parasitol Res; 2003 Jun; 90(3):221-4. PubMed ID: 12783311
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Selenium-induced apoptosis-like cell death in Plasmodium falciparum.
    Suradji EW; Hatabu T; Kobayashi K; Yamazaki C; Abdulah R; Nakazawa M; Nakajima-Shimada J; Koyama H
    Parasitology; 2011 Dec; 138(14):1852-62. PubMed ID: 21854677
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An analytical presentation of drug resistance in Plasmodium falciparum and guidelines to formulate a drug strategy.
    Pandya AP; Sharma RS; Sahu GC
    J Commun Dis; 1995 Mar; 27(1):44-54. PubMed ID: 7636152
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A 2-amino quinoline, 5-(3-(2-(7-chloroquinolin-2-yl)ethenyl)phenyl)-8-dimethylcarbamyl-4,6-dithiaoctanoic acid, interacts with PfMDR1 and inhibits its drug transport in Plasmodium falciparum.
    Edaye S; Reiling SJ; Leimanis ML; Wunderlich J; Rohrbach P; Georges E
    Mol Biochem Parasitol; 2014 Jun; 195(1):34-42. PubMed ID: 24914817
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A better resolution for integrating methods for monitoring Plasmodium falciparum resistance to antimalarial drugs.
    Abdul-Ghani R; Al-Maktari MT; Al-Shibani LA; Allam AF
    Acta Trop; 2014 Sep; 137():44-57. PubMed ID: 24801884
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Delayed parasite elimination in human infections treated with clindamycin parallels 'delayed death' of Plasmodium falciparum in vitro.
    Burkhardt D; Wiesner J; Stoesser N; Ramharter M; Uhlemann AC; Issifou S; Jomaa H; Krishna S; Kremsner PG; Borrmann S
    Int J Parasitol; 2007 Jun; 37(7):777-85. PubMed ID: 17280676
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Food vacuole-associated lipid bodies and heterogeneous lipid environments in the malaria parasite, Plasmodium falciparum.
    Jackson KE; Klonis N; Ferguson DJ; Adisa A; Dogovski C; Tilley L
    Mol Microbiol; 2004 Oct; 54(1):109-22. PubMed ID: 15458409
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Screening and evaluation of inhibitors of Plasmodium falciparum merozoite egress and invasion using cytometry.
    Bouillon A; Gorgette O; Mercereau-Puijalon O; Barale JC
    Methods Mol Biol; 2013; 923():523-34. PubMed ID: 22990802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Acidification of the malaria parasite's digestive vacuole by a H+-ATPase and a H+-pyrophosphatase.
    Saliba KJ; Allen RJ; Zissis S; Bray PG; Ward SA; Kirk K
    J Biol Chem; 2003 Feb; 278(8):5605-12. PubMed ID: 12427765
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Falciparum malaria in naturally infected human patients: VIII. Fine structure of intraerythrocytic asexual forms before and during chloroquine treatment.
    el-Shoura SM
    Appl Parasitol; 1994 Sep; 35(3):207-18. PubMed ID: 7951397
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Flow cytometry-based methods for measurement of cytosolic calcium and surface protein expression in Plasmodium falciparum merozoites.
    Singh S; Chitnis CE
    Methods Mol Biol; 2013; 923():281-90. PubMed ID: 22990785
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Chloroquine resistance-conferring mutations in pfcrt give rise to a chloroquine-associated H+ leak from the malaria parasite's digestive vacuole.
    Lehane AM; Kirk K
    Antimicrob Agents Chemother; 2008 Dec; 52(12):4374-80. PubMed ID: 18852275
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.