These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
355 related articles for article (PubMed ID: 27460337)
21. Combined bacterial and fungal intestinal microbiota analyses: Impact of storage conditions and DNA extraction protocols. Angebault C; Ghozlane A; Volant S; Botterel F; d'Enfert C; Bougnoux ME PLoS One; 2018; 13(8):e0201174. PubMed ID: 30074988 [TBL] [Abstract][Full Text] [Related]
22. Comparative analysis of gut bacterial communities of green turtles (Chelonia mydas) pre-hospitalization and post-rehabilitation by high-throughput sequencing of bacterial 16S rRNA gene. Ahasan MS; Waltzek TB; Huerlimann R; Ariel E Microbiol Res; 2018 Mar; 207():91-99. PubMed ID: 29458874 [TBL] [Abstract][Full Text] [Related]
23. The fecal bacterial microbiota of bats; Slovenia. Vengust M; Knapic T; Weese JS PLoS One; 2018; 13(5):e0196728. PubMed ID: 29791473 [TBL] [Abstract][Full Text] [Related]
24. Potential use of bacterial community succession for estimating post-mortem interval as revealed by high-throughput sequencing. Guo J; Fu X; Liao H; Hu Z; Long L; Yan W; Ding Y; Zha L; Guo Y; Yan J; Chang Y; Cai J Sci Rep; 2016 Apr; 6():24197. PubMed ID: 27052375 [TBL] [Abstract][Full Text] [Related]
25. Characterization of the fecal microbiome in different swine groups by high-throughput sequencing. Park SJ; Kim J; Lee JS; Rhee SK; Kim H Anaerobe; 2014 Aug; 28():157-62. PubMed ID: 24954845 [TBL] [Abstract][Full Text] [Related]
26. High throughput sequencing reveals distinct microbial populations within the mucosal and luminal niches in healthy individuals. Ringel Y; Maharshak N; Ringel-Kulka T; Wolber EA; Sartor RB; Carroll IM Gut Microbes; 2015; 6(3):173-81. PubMed ID: 25915459 [TBL] [Abstract][Full Text] [Related]
27. Are all faecal bacteria detected with equal efficiency? A study using next-generation sequencing and quantitative culture of infants' faecal samples. Sjöberg F; Nookaew I; Yazdanshenas S; Gio-Batta M; Adlerberth I; Wold AE J Microbiol Methods; 2020 Oct; 177():106018. PubMed ID: 32795633 [TBL] [Abstract][Full Text] [Related]
28. Assessment of fecal bacterial viability and diversity in fresh and frozen fecal microbiota transplant (FMT) product in horses. Long AE; Pitta D; Hennessy M; Indugu N; Vecchiarelli B; Luethy D; Aceto H; Hurcombe S BMC Vet Res; 2024 Jul; 20(1):306. PubMed ID: 38987780 [TBL] [Abstract][Full Text] [Related]
29. Potential human pathogenic bacteria in five hot springs in Eritrea revealed by next generation sequencing. Ghilamicael AM; Boga HI; Anami SE; Mehari T; Budambula NLM PLoS One; 2018; 13(3):e0194554. PubMed ID: 29566040 [TBL] [Abstract][Full Text] [Related]
30. Pancreatic cyst fluid harbors a unique microbiome. Li S; Fuhler GM; Bn N; Jose T; Bruno MJ; Peppelenbosch MP; Konstantinov SR Microbiome; 2017 Nov; 5(1):147. PubMed ID: 29122007 [TBL] [Abstract][Full Text] [Related]
31. Effect of ensiled mulberry leaves and sun-dried mulberry fruit pomace on the fecal bacterial community composition in finishing steers. Li Y; Meng Q; Zhou B; Zhou Z BMC Microbiol; 2017 Apr; 17(1):97. PubMed ID: 28431497 [TBL] [Abstract][Full Text] [Related]
32. Tissue-Associated Bacterial Alterations in Rectal Carcinoma Patients Revealed by 16S rRNA Community Profiling. Thomas AM; Jesus EC; Lopes A; Aguiar S; Begnami MD; Rocha RM; Carpinetti PA; Camargo AA; Hoffmann C; Freitas HC; Silva IT; Nunes DN; Setubal JC; Dias-Neto E Front Cell Infect Microbiol; 2016; 6():179. PubMed ID: 28018861 [TBL] [Abstract][Full Text] [Related]
33. Fecal bacterial communities of wild-captured and stranded green turtles (Chelonia mydas) on the Great Barrier Reef. Ahasan MS; Waltzek TB; Huerlimann R; Ariel E FEMS Microbiol Ecol; 2017 Dec; 93(12):. PubMed ID: 29069420 [TBL] [Abstract][Full Text] [Related]
34. Gut Microbiota Analysis Results Are Highly Dependent on the 16S rRNA Gene Target Region, Whereas the Impact of DNA Extraction Is Minor. Rintala A; Pietilä S; Munukka E; Eerola E; Pursiheimo JP; Laiho A; Pekkala S; Huovinen P J Biomol Tech; 2017 Apr; 28(1):19-30. PubMed ID: 28260999 [TBL] [Abstract][Full Text] [Related]
35. Impact of DNA extraction, sample dilution, and reagent contamination on 16S rRNA gene sequencing of human feces. Velásquez-Mejía EP; de la Cuesta-Zuluaga J; Escobar JS Appl Microbiol Biotechnol; 2018 Jan; 102(1):403-411. PubMed ID: 29079861 [TBL] [Abstract][Full Text] [Related]
36. High-throughput sequencing technology to reveal the composition and function of cecal microbiota in Dagu chicken. Xu Y; Yang H; Zhang L; Su Y; Shi D; Xiao H; Tian Y BMC Microbiol; 2016 Nov; 16(1):259. PubMed ID: 27814685 [TBL] [Abstract][Full Text] [Related]
37. A low-cost pipeline for soil microbiome profiling. Bollmann-Giolai A; Giolai M; Heavens D; Macaulay I; Malone J; Clark MD Microbiologyopen; 2020 Dec; 9(12):e1133. PubMed ID: 33225533 [TBL] [Abstract][Full Text] [Related]
38. Differences in the gut microbiome composition of Korean children and adult samples based on different DNA isolation kits. Baek C; Kim WJ; Moon J; Moon SY; Kim W; Hu HJ; Min J PLoS One; 2022; 17(3):e0264291. PubMed ID: 35271591 [TBL] [Abstract][Full Text] [Related]
39. A high-throughput DNA sequencing study of fecal bacteria of seven Mexican horse breeds. Hernández-Quiroz F; Murugesan S; Flores-Rivas C; Piña-Escobedo A; Juárez-Hernández JI; García-Espitia M; Chávez-Carbajal A; Nirmalkar K; García-Mena J Arch Microbiol; 2022 Jun; 204(7):382. PubMed ID: 35687150 [TBL] [Abstract][Full Text] [Related]