These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 27460539)

  • 1. Propensity score matching and complex surveys.
    Austin PC; Jembere N; Chiu M
    Stat Methods Med Res; 2018 Apr; 27(4):1240-1257. PubMed ID: 27460539
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of bootstrapping when using propensity-score matching without replacement: a simulation study.
    Austin PC; Small DS
    Stat Med; 2014 Oct; 33(24):4306-19. PubMed ID: 25087884
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Type I error rates, coverage of confidence intervals, and variance estimation in propensity-score matched analyses.
    Austin PC
    Int J Biostat; 2009 Apr; 5(1):Article 13. PubMed ID: 20949126
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Assessing covariate balance when using the generalized propensity score with quantitative or continuous exposures.
    Austin PC
    Stat Methods Med Res; 2019 May; 28(5):1365-1377. PubMed ID: 29415624
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of the ability of double-robust estimators to correct bias in propensity score matching analysis. A Monte Carlo simulation study.
    Nguyen TL; Collins GS; Spence J; Devereaux PJ; Daurès JP; Landais P; Le Manach Y
    Pharmacoepidemiol Drug Saf; 2017 Dec; 26(12):1513-1519. PubMed ID: 28984050
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study.
    Austin PC; Grootendorst P; Anderson GM
    Stat Med; 2007 Feb; 26(4):734-53. PubMed ID: 16708349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating the effect of treatment on binary outcomes using full matching on the propensity score.
    Austin PC; Stuart EA
    Stat Methods Med Res; 2017 Dec; 26(6):2505-2525. PubMed ID: 26329750
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The performance of inverse probability of treatment weighting and full matching on the propensity score in the presence of model misspecification when estimating the effect of treatment on survival outcomes.
    Austin PC; Stuart EA
    Stat Methods Med Res; 2017 Aug; 26(4):1654-1670. PubMed ID: 25934643
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Variance estimation when using propensity-score matching with replacement with survival or time-to-event outcomes.
    Austin PC; Cafri G
    Stat Med; 2020 May; 39(11):1623-1640. PubMed ID: 32109319
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Some methods of propensity-score matching had superior performance to others: results of an empirical investigation and Monte Carlo simulations.
    Austin PC
    Biom J; 2009 Feb; 51(1):171-84. PubMed ID: 19197955
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimal caliper widths for propensity-score matching when estimating differences in means and differences in proportions in observational studies.
    Austin PC
    Pharm Stat; 2011; 10(2):150-61. PubMed ID: 20925139
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Variance estimation of the risk difference when using propensity-score matching and weighting with time-to-event outcomes.
    Cafri G; Austin PC
    Pharm Stat; 2023; 22(5):880-902. PubMed ID: 37258420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The performance of different propensity-score methods for estimating differences in proportions (risk differences or absolute risk reductions) in observational studies.
    Austin PC
    Stat Med; 2010 Sep; 29(20):2137-48. PubMed ID: 20108233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The performance of different propensity score methods for estimating marginal hazard ratios.
    Austin PC
    Stat Med; 2013 Jul; 32(16):2837-49. PubMed ID: 23239115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Propensity-score matching with competing risks in survival analysis.
    Austin PC; Fine JP
    Stat Med; 2019 Feb; 38(5):751-777. PubMed ID: 30347461
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Statistical criteria for selecting the optimal number of untreated subjects matched to each treated subject when using many-to-one matching on the propensity score.
    Austin PC
    Am J Epidemiol; 2010 Nov; 172(9):1092-7. PubMed ID: 20802241
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Estimating causal effects for survival (time-to-event) outcomes by combining classification tree analysis and propensity score weighting.
    Linden A; Yarnold PR
    J Eval Clin Pract; 2018 Apr; 24(2):380-387. PubMed ID: 29230910
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The relative ability of different propensity score methods to balance measured covariates between treated and untreated subjects in observational studies.
    Austin PC
    Med Decis Making; 2009; 29(6):661-77. PubMed ID: 19684288
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Double propensity-score adjustment: A solution to design bias or bias due to incomplete matching.
    Austin PC
    Stat Methods Med Res; 2017 Feb; 26(1):201-222. PubMed ID: 25038071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Covariate-adjusted survival analyses in propensity-score matched samples: Imputing potential time-to-event outcomes.
    Austin PC; Thomas N; Rubin DB
    Stat Methods Med Res; 2020 Mar; 29(3):728-751. PubMed ID: 30569832
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.