These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 27460556)

  • 1. Enrichment of Pyrrolic Nitrogen by Hole Defects in Nitrogen and Sulfur Co-Doped Graphene Hydrogel for Flexible Supercapacitors.
    Tran NQ; Kang BK; Woo MH; Yoon DH
    ChemSusChem; 2016 Aug; 9(16):2261-8. PubMed ID: 27460556
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Functionalized graphene hydrogel-based high-performance supercapacitors.
    Xu Y; Lin Z; Huang X; Wang Y; Huang Y; Duan X
    Adv Mater; 2013 Oct; 25(40):5779-84. PubMed ID: 23900931
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High-Surface-Area Nitrogen-Doped Reduced Graphene Oxide for Electric Double-Layer Capacitors.
    Youn HC; Bak SM; Kim MS; Jaye C; Fischer DA; Lee CW; Yang XQ; Roh KC; Kim KB
    ChemSusChem; 2015 Jun; 8(11):1875-84. PubMed ID: 25916491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nitrogen-doped reduced graphene oxide electrodes for electrochemical supercapacitors.
    Nolan H; Mendoza-Sanchez B; Ashok Kumar N; McEvoy N; O'Brien S; Nicolosi V; Duesberg GS
    Phys Chem Chem Phys; 2014 Feb; 16(6):2280-4. PubMed ID: 24418938
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible solid-state supercapacitors based on three-dimensional graphene hydrogel films.
    Xu Y; Lin Z; Huang X; Liu Y; Huang Y; Duan X
    ACS Nano; 2013 May; 7(5):4042-9. PubMed ID: 23550832
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nitrogen and Phosphorous Co-Doped Graphene Monolith for Supercapacitors.
    Wen Y; Rufford TE; Hulicova-Jurcakova D; Wang L
    ChemSusChem; 2016 Mar; 9(5):513-20. PubMed ID: 26834002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cobalt Doping To Boost the Electrochemical Properties of Ni@Ni
    Xu S; Wang T; Ma Y; Jiang W; Wang S; Hong M; Hu N; Su Y; Zhang Y; Yang Z
    ChemSusChem; 2017 Oct; 10(20):4056-4065. PubMed ID: 28857459
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible Asymmetric Supercapacitors Based on Nitrogen-Doped Graphene Hydrogels with Embedded Nickel Hydroxide Nanoplates.
    Xie H; Tang S; Li D; Vongehr S; Meng X
    ChemSusChem; 2017 May; 10(10):2301-2308. PubMed ID: 27094454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flexible Asymmetric Threadlike Supercapacitors Based on NiCo
    Wang Q; Ma Y; Wu Y; Zhang D; Miao M
    ChemSusChem; 2017 Apr; 10(7):1427-1435. PubMed ID: 28195423
    [TBL] [Abstract][Full Text] [Related]  

  • 10. β-Cobalt sulfide nanoparticles decorated graphene composite electrodes for high capacity and power supercapacitors.
    Qu B; Chen Y; Zhang M; Hu L; Lei D; Lu B; Li Q; Wang Y; Chen L; Wang T
    Nanoscale; 2012 Dec; 4(24):7810-6. PubMed ID: 23147355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sulfur and Nitrogen Co-Doped Graphene Electrodes for High-Performance Ionic Artificial Muscles.
    Kotal M; Kim J; Kim KJ; Oh IK
    Adv Mater; 2016 Feb; 28(8):1610-5. PubMed ID: 26669817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfur and nitrogen co-doped, few-layered graphene oxide as a highly efficient electrocatalyst for the oxygen-reduction reaction.
    Xu J; Dong G; Jin C; Huang M; Guan L
    ChemSusChem; 2013 Mar; 6(3):493-9. PubMed ID: 23404829
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Capacitance of p- and n-doped graphenes is dominated by structural defects regardless of the dopant type.
    Ambrosi A; Poh HL; Wang L; Sofer Z; Pumera M
    ChemSusChem; 2014 Apr; 7(4):1102-6. PubMed ID: 24591401
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal treatment effects on charge storage performance of graphene-based materials for supercapacitors.
    Zhang H; Bhat VV; Gallego NC; Contescu CI
    ACS Appl Mater Interfaces; 2012 Jun; 4(6):3239-46. PubMed ID: 22680779
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generation of B-doped graphene nanoplatelets using a solution process and their supercapacitor applications.
    Han J; Zhang LL; Lee S; Oh J; Lee KS; Potts JR; Ji J; Zhao X; Ruoff RS; Park S
    ACS Nano; 2013 Jan; 7(1):19-26. PubMed ID: 23244292
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection.
    Dong XC; Xu H; Wang XW; Huang YX; Chan-Park MB; Zhang H; Wang LH; Huang W; Chen P
    ACS Nano; 2012 Apr; 6(4):3206-13. PubMed ID: 22435881
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiple signal-amplification via Ag and TiO
    Hao N; Hua R; Chen S; Zhang Y; Zhou Z; Qian J; Liu Q; Wang K
    Biosens Bioelectron; 2018 Mar; 101():14-20. PubMed ID: 29031885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interconnected 3 D Network of Graphene-Oxide Nanosheets Decorated with Carbon Dots for High-Performance Supercapacitors.
    Zhao X; Li M; Dong H; Liu Y; Hu H; Cai Y; Liang Y; Xiao Y; Zheng M
    ChemSusChem; 2017 Jun; 10(12):2626-2634. PubMed ID: 28440020
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes.
    Kim TY; Lee HW; Stoller M; Dreyer DR; Bielawski CW; Ruoff RS; Suh KS
    ACS Nano; 2011 Jan; 5(1):436-42. PubMed ID: 21142183
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synergistically Active NiCo
    Tiruneh SN; Kang BK; Kwag SH; Lee Y; Kim M; Yoon DH
    Chemistry; 2018 Mar; 24(13):3263-3270. PubMed ID: 29389044
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.