BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 27460599)

  • 1. Epigenetic changes in cancer by Raman imaging, fluorescence imaging, AFM and scanning near-field optical microscopy (SNOM). Acetylation in normal and human cancer breast cells MCF10A, MCF7 and MDA-MB-231.
    Abramczyk H; Surmacki J; Kopeć M; Olejnik AK; Kaufman-Szymczyk A; Fabianowska-Majewska K
    Analyst; 2016 Oct; 141(19):5646-58. PubMed ID: 27460599
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of lipid droplets and adipocytes in cancer. Raman imaging of cell cultures: MCF10A, MCF7, and MDA-MB-231 compared to adipocytes in cancerous human breast tissue.
    Abramczyk H; Surmacki J; Kopeć M; Olejnik AK; Lubecka-Pietruszewska K; Fabianowska-Majewska K
    Analyst; 2015 Apr; 140(7):2224-35. PubMed ID: 25730442
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Local-dependency of morphological and optical properties between breast cancer cell lines.
    Lee SH; Kim OK; Lee S; Kim JK
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Dec; 205():132-138. PubMed ID: 30015018
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in Raman imaging combined with AFM and fluorescence microscopy are beneficial for oncology and cancer research.
    Abramczyk H; Imiela A; Brozek-Pluska B; Kopec M
    Nanomedicine (Lond); 2019 Jul; 14(14):1873-1888. PubMed ID: 31305216
    [No Abstract]   [Full Text] [Related]  

  • 5. Viscoelastic properties of normal and cancerous human breast cells are affected differently by contact to adjacent cells.
    Schierbaum N; Rheinlaender J; Schäffer TE
    Acta Biomater; 2017 Jun; 55():239-248. PubMed ID: 28396292
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BRMS1 expression alters the ultrastructural, biomechanical and biochemical properties of MDA-MB-435 human breast carcinoma cells: an AFM and Raman microspectroscopy study.
    Wu Y; McEwen GD; Harihar S; Baker SM; DeWald DB; Zhou A
    Cancer Lett; 2010 Jul; 293(1):82-91. PubMed ID: 20083343
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The lipid phenotype of breast cancer cells characterized by Raman microspectroscopy: towards a stratification of malignancy.
    Nieva C; Marro M; Santana-Codina N; Rao S; Petrov D; Sierra A
    PLoS One; 2012; 7(10):e46456. PubMed ID: 23082122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Label-Free Raman Spectroscopic Techniques with Morphological and Optical Characterization for Cancer Cell Analysis.
    Lee S; Kim JK
    Adv Exp Med Biol; 2021; 1310():385-399. PubMed ID: 33834443
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Subcellular spectroscopic markers, topography and nanomechanics of human lung cancer and breast cancer cells examined by combined confocal Raman microspectroscopy and atomic force microscopy.
    McEwen GD; Wu Y; Tang M; Qi X; Xiao Z; Baker SM; Yu T; Gilbertson TA; DeWald DB; Zhou A
    Analyst; 2013 Feb; 138(3):787-97. PubMed ID: 23187307
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Raman microspectroscopy of Hematoporphyrins. Imaging of the noncancerous and the cancerous human breast tissues with photosensitizers.
    Brozek-Pluska B; Kopec M
    Spectrochim Acta A Mol Biomol Spectrosc; 2016 Dec; 169():182-91. PubMed ID: 27376758
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Raman, AFM and SNOM high resolution imaging of carotene crystals in a model carrot cell system.
    Rygula A; Oleszkiewicz T; Grzebelus E; Pacia MZ; Baranska M; Baranski R
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 May; 197():47-55. PubMed ID: 29402560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Angiogenesis - a crucial step in breast cancer growth, progression and dissemination by Raman imaging.
    Kopeć M; Abramczyk H
    Spectrochim Acta A Mol Biomol Spectrosc; 2018 Jun; 198():338-345. PubMed ID: 29486925
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Histone H3 lysine 4 acetylation and methylation dynamics define breast cancer subtypes.
    Messier TL; Gordon JA; Boyd JR; Tye CE; Browne G; Stein JL; Lian JB; Stein GS
    Oncotarget; 2016 Feb; 7(5):5094-109. PubMed ID: 26783963
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A look into the use of Raman spectroscopy for brain and breast cancer diagnostics: linear and non-linear optics in cancer research as a gateway to tumor cell identity.
    Abramczyk H; Brozek-Pluska B; Jarota A; Surmacki J; Imiela A; Kopec M
    Expert Rev Mol Diagn; 2020 Jan; 20(1):99-115. PubMed ID: 32013616
    [No Abstract]   [Full Text] [Related]  

  • 15. A comparison of breast cancer tumor cells with varying expression of the Her2/neu receptor by Raman microspectroscopic imaging.
    Hartsuiker L; Zeijen NJ; Terstappen LW; Otto C
    Analyst; 2010 Dec; 135(12):3220-6. PubMed ID: 20978707
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of human breast epithelial cells by confocal Raman microspectroscopy.
    Yu C; Gestl E; Eckert K; Allara D; Irudayaraj J
    Cancer Detect Prev; 2006; 30(6):515-22. PubMed ID: 17113723
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Different Phases of Breast Cancer Cells: Raman Study of Immortalized, Transformed, and Invasive Cells.
    Chaturvedi D; Balaji SA; Bn VK; Ariese F; Umapathy S; Rangarajan A
    Biosensors (Basel); 2016 Nov; 6(4):. PubMed ID: 27916791
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Revision of Commonly Accepted Warburg Mechanism of Cancer Development: Redox-Sensitive Mitochondrial Cytochromes in Breast and Brain Cancers by Raman Imaging.
    Abramczyk H; Surmacki JM; Brozek-Pluska B; Kopec M
    Cancers (Basel); 2021 May; 13(11):. PubMed ID: 34073216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fluorescence imaging and spectroscopy of biomaterials in air and liquid by scanning near-field optical/atomic force microscopy.
    Muramatsu H; Chiba N; Nakajima K; Ataka T; Fujihira M; Hitomi J; Ushiki T
    Scanning Microsc; 1996; 10(4):975-82. PubMed ID: 9854850
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Squalene protects against oxidative DNA damage in MCF10A human mammary epithelial cells but not in MCF7 and MDA-MB-231 human breast cancer cells.
    Warleta F; Campos M; Allouche Y; Sánchez-Quesada C; Ruiz-Mora J; Beltrán G; Gaforio JJ
    Food Chem Toxicol; 2010 Apr; 48(4):1092-100. PubMed ID: 20138105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.