These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
505 related articles for article (PubMed ID: 27460777)
1. Loss of NAD-Dependent Protein Deacetylase Sirtuin-2 Alters Mitochondrial Protein Acetylation and Dysregulates Mitophagy. Liu G; Park SH; Imbesi M; Nathan WJ; Zou X; Zhu Y; Jiang H; Parisiadou L; Gius D Antioxid Redox Signal; 2017 May; 26(15):849-863. PubMed ID: 27460777 [TBL] [Abstract][Full Text] [Related]
6. Loss of SIRT2 leads to axonal degeneration and locomotor disability associated with redox and energy imbalance. Fourcade S; Morató L; Parameswaran J; Ruiz M; Ruiz-Cortés T; Jové M; Naudí A; Martínez-Redondo P; Dierssen M; Ferrer I; Villarroya F; Pamplona R; Vaquero A; Portero-Otín M; Pujol A Aging Cell; 2017 Dec; 16(6):1404-1413. PubMed ID: 28984064 [TBL] [Abstract][Full Text] [Related]
7. Dual Deletion of the Sirtuins SIRT2 and SIRT3 Impacts on Metabolism and Inflammatory Responses of Macrophages and Protects From Endotoxemia. Heinonen T; Ciarlo E; Rigoni E; Regina J; Le Roy D; Roger T Front Immunol; 2019; 10():2713. PubMed ID: 31849939 [TBL] [Abstract][Full Text] [Related]
8. High glucose-induced oxidative stress represses sirtuin deacetylase expression and increases histone acetylation leading to neural tube defects. Yu J; Wu Y; Yang P J Neurochem; 2016 May; 137(3):371-83. PubMed ID: 26896748 [TBL] [Abstract][Full Text] [Related]
10. The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes. Lemos V; de Oliveira RM; Naia L; Szegö É; Ramos E; Pinho S; Magro F; Cavadas C; Rego AC; Costa V; Outeiro TF; Gomes P Hum Mol Genet; 2017 Nov; 26(21):4105-4117. PubMed ID: 28973648 [TBL] [Abstract][Full Text] [Related]
11. SIRT2 knockout exacerbates insulin resistance in high fat-fed mice. Lantier L; Williams AS; Hughey CC; Bracy DP; James FD; Ansari MA; Gius D; Wasserman DH PLoS One; 2018; 13(12):e0208634. PubMed ID: 30533032 [TBL] [Abstract][Full Text] [Related]
12. Functional characterization of NAD dependent de-acetylases SIRT1 and SIRT2 in B-Cell Chronic Lymphocytic Leukemia (CLL). Bhalla S; Gordon LI Cancer Biol Ther; 2016; 17(3):300-9. PubMed ID: 26794150 [TBL] [Abstract][Full Text] [Related]
13. SIRT2 regulates oxidative stress-induced cell death through deacetylation of c-Jun NH Sarikhani M; Mishra S; Desingu PA; Kotyada C; Wolfgeher D; Gupta MP; Singh M; Sundaresan NR Cell Death Differ; 2018 Sep; 25(9):1638-1656. PubMed ID: 29449643 [TBL] [Abstract][Full Text] [Related]
14. Sirt2 Regulates Liver Metabolism in a Sex-Specific Manner. Schmidt AV; Bharathi SS; Solo KJ; Bons J; Rose JP; Schilling B; Goetzman ES Biomolecules; 2024 Sep; 14(9):. PubMed ID: 39334926 [TBL] [Abstract][Full Text] [Related]
15. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis. Ahn BH; Kim HS; Song S; Lee IH; Liu J; Vassilopoulos A; Deng CX; Finkel T Proc Natl Acad Sci U S A; 2008 Sep; 105(38):14447-52. PubMed ID: 18794531 [TBL] [Abstract][Full Text] [Related]
16. Increased expression of SIRT2 is a novel marker of cellular senescence and is dependent on wild type p53 status. Anwar T; Khosla S; Ramakrishna G Cell Cycle; 2016 Jul; 15(14):1883-97. PubMed ID: 27229617 [TBL] [Abstract][Full Text] [Related]
17. Regulation and protection of mitochondrial physiology by sirtuins. Pereira CV; Lebiedzinska M; Wieckowski MR; Oliveira PJ Mitochondrion; 2012 Jan; 12(1):66-76. PubMed ID: 21787885 [TBL] [Abstract][Full Text] [Related]
18. Protocols for Cloning, Expression, and Functional Analysis of Sirtuin2 (SIRT2). Ji S; Doucette JR; Nazarali AJ Methods Mol Biol; 2016; 1436():189-99. PubMed ID: 27246216 [TBL] [Abstract][Full Text] [Related]