These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

505 related articles for article (PubMed ID: 27460777)

  • 1. Loss of NAD-Dependent Protein Deacetylase Sirtuin-2 Alters Mitochondrial Protein Acetylation and Dysregulates Mitophagy.
    Liu G; Park SH; Imbesi M; Nathan WJ; Zou X; Zhu Y; Jiang H; Parisiadou L; Gius D
    Antioxid Redox Signal; 2017 May; 26(15):849-863. PubMed ID: 27460777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial Metabolism Power SIRT2-Dependent Deficient Traffic Causing Alzheimer's-Disease Related Pathology.
    Silva DF; Esteves AR; Oliveira CR; Cardoso SM
    Mol Neurobiol; 2017 Aug; 54(6):4021-4040. PubMed ID: 27311773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial Metabolism Regulates Microtubule Acetylome and Autophagy Trough Sirtuin-2: Impact for Parkinson's Disease.
    Esteves AR; Arduíno DM; Silva DF; Viana SD; Pereira FC; Cardoso SM
    Mol Neurobiol; 2018 Feb; 55(2):1440-1462. PubMed ID: 28168426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oligodendrocytes enhance axonal energy metabolism by deacetylation of mitochondrial proteins through transcellular delivery of SIRT2.
    Chamberlain KA; Huang N; Xie Y; LiCausi F; Li S; Li Y; Sheng ZH
    Neuron; 2021 Nov; 109(21):3456-3472.e8. PubMed ID: 34506725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extranuclear Sirtuins and Metabolic Stress.
    Elkhwanky MS; Hakkola J
    Antioxid Redox Signal; 2018 Mar; 28(8):662-676. PubMed ID: 28707980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of SIRT2 leads to axonal degeneration and locomotor disability associated with redox and energy imbalance.
    Fourcade S; Morató L; Parameswaran J; Ruiz M; Ruiz-Cortés T; Jové M; Naudí A; Martínez-Redondo P; Dierssen M; Ferrer I; Villarroya F; Pamplona R; Vaquero A; Portero-Otín M; Pujol A
    Aging Cell; 2017 Dec; 16(6):1404-1413. PubMed ID: 28984064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual Deletion of the Sirtuins SIRT2 and SIRT3 Impacts on Metabolism and Inflammatory Responses of Macrophages and Protects From Endotoxemia.
    Heinonen T; Ciarlo E; Rigoni E; Regina J; Le Roy D; Roger T
    Front Immunol; 2019; 10():2713. PubMed ID: 31849939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High glucose-induced oxidative stress represses sirtuin deacetylase expression and increases histone acetylation leading to neural tube defects.
    Yu J; Wu Y; Yang P
    J Neurochem; 2016 May; 137(3):371-83. PubMed ID: 26896748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial Sirtuin Network Reveals Dynamic SIRT3-Dependent Deacetylation in Response to Membrane Depolarization.
    Yang W; Nagasawa K; Münch C; Xu Y; Satterstrom K; Jeong S; Hayes SD; Jedrychowski MP; Vyas FS; Zaganjor E; Guarani V; Ringel AE; Gygi SP; Harper JW; Haigis MC
    Cell; 2016 Nov; 167(4):985-1000.e21. PubMed ID: 27881304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes.
    Lemos V; de Oliveira RM; Naia L; Szegö É; Ramos E; Pinho S; Magro F; Cavadas C; Rego AC; Costa V; Outeiro TF; Gomes P
    Hum Mol Genet; 2017 Nov; 26(21):4105-4117. PubMed ID: 28973648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SIRT2 knockout exacerbates insulin resistance in high fat-fed mice.
    Lantier L; Williams AS; Hughey CC; Bracy DP; James FD; Ansari MA; Gius D; Wasserman DH
    PLoS One; 2018; 13(12):e0208634. PubMed ID: 30533032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional characterization of NAD dependent de-acetylases SIRT1 and SIRT2 in B-Cell Chronic Lymphocytic Leukemia (CLL).
    Bhalla S; Gordon LI
    Cancer Biol Ther; 2016; 17(3):300-9. PubMed ID: 26794150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SIRT2 regulates oxidative stress-induced cell death through deacetylation of c-Jun NH
    Sarikhani M; Mishra S; Desingu PA; Kotyada C; Wolfgeher D; Gupta MP; Singh M; Sundaresan NR
    Cell Death Differ; 2018 Sep; 25(9):1638-1656. PubMed ID: 29449643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sirt2 Regulates Liver Metabolism in a Sex-Specific Manner.
    Schmidt AV; Bharathi SS; Solo KJ; Bons J; Rose JP; Schilling B; Goetzman ES
    Biomolecules; 2024 Sep; 14(9):. PubMed ID: 39334926
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis.
    Ahn BH; Kim HS; Song S; Lee IH; Liu J; Vassilopoulos A; Deng CX; Finkel T
    Proc Natl Acad Sci U S A; 2008 Sep; 105(38):14447-52. PubMed ID: 18794531
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Increased expression of SIRT2 is a novel marker of cellular senescence and is dependent on wild type p53 status.
    Anwar T; Khosla S; Ramakrishna G
    Cell Cycle; 2016 Jul; 15(14):1883-97. PubMed ID: 27229617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation and protection of mitochondrial physiology by sirtuins.
    Pereira CV; Lebiedzinska M; Wieckowski MR; Oliveira PJ
    Mitochondrion; 2012 Jan; 12(1):66-76. PubMed ID: 21787885
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Protocols for Cloning, Expression, and Functional Analysis of Sirtuin2 (SIRT2).
    Ji S; Doucette JR; Nazarali AJ
    Methods Mol Biol; 2016; 1436():189-99. PubMed ID: 27246216
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SIRT2 deacetylase represses NFAT transcription factor to maintain cardiac homeostasis.
    Sarikhani M; Maity S; Mishra S; Jain A; Tamta AK; Ravi V; Kondapalli MS; Desingu PA; Khan D; Kumar S; Rao S; Inbaraj M; Pandit AS; Sundaresan NR
    J Biol Chem; 2018 Apr; 293(14):5281-5294. PubMed ID: 29440391
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mitochondrial sirtuins.
    Huang JY; Hirschey MD; Shimazu T; Ho L; Verdin E
    Biochim Biophys Acta; 2010 Aug; 1804(8):1645-51. PubMed ID: 20060508
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.