BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

503 related articles for article (PubMed ID: 27460777)

  • 1. Loss of NAD-Dependent Protein Deacetylase Sirtuin-2 Alters Mitochondrial Protein Acetylation and Dysregulates Mitophagy.
    Liu G; Park SH; Imbesi M; Nathan WJ; Zou X; Zhu Y; Jiang H; Parisiadou L; Gius D
    Antioxid Redox Signal; 2017 May; 26(15):849-863. PubMed ID: 27460777
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitochondrial Metabolism Power SIRT2-Dependent Deficient Traffic Causing Alzheimer's-Disease Related Pathology.
    Silva DF; Esteves AR; Oliveira CR; Cardoso SM
    Mol Neurobiol; 2017 Aug; 54(6):4021-4040. PubMed ID: 27311773
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mitochondrial Metabolism Regulates Microtubule Acetylome and Autophagy Trough Sirtuin-2: Impact for Parkinson's Disease.
    Esteves AR; Arduíno DM; Silva DF; Viana SD; Pereira FC; Cardoso SM
    Mol Neurobiol; 2018 Feb; 55(2):1440-1462. PubMed ID: 28168426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Oligodendrocytes enhance axonal energy metabolism by deacetylation of mitochondrial proteins through transcellular delivery of SIRT2.
    Chamberlain KA; Huang N; Xie Y; LiCausi F; Li S; Li Y; Sheng ZH
    Neuron; 2021 Nov; 109(21):3456-3472.e8. PubMed ID: 34506725
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Extranuclear Sirtuins and Metabolic Stress.
    Elkhwanky MS; Hakkola J
    Antioxid Redox Signal; 2018 Mar; 28(8):662-676. PubMed ID: 28707980
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loss of SIRT2 leads to axonal degeneration and locomotor disability associated with redox and energy imbalance.
    Fourcade S; Morató L; Parameswaran J; Ruiz M; Ruiz-Cortés T; Jové M; Naudí A; Martínez-Redondo P; Dierssen M; Ferrer I; Villarroya F; Pamplona R; Vaquero A; Portero-Otín M; Pujol A
    Aging Cell; 2017 Dec; 16(6):1404-1413. PubMed ID: 28984064
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dual Deletion of the Sirtuins SIRT2 and SIRT3 Impacts on Metabolism and Inflammatory Responses of Macrophages and Protects From Endotoxemia.
    Heinonen T; Ciarlo E; Rigoni E; Regina J; Le Roy D; Roger T
    Front Immunol; 2019; 10():2713. PubMed ID: 31849939
    [TBL] [Abstract][Full Text] [Related]  

  • 8. High glucose-induced oxidative stress represses sirtuin deacetylase expression and increases histone acetylation leading to neural tube defects.
    Yu J; Wu Y; Yang P
    J Neurochem; 2016 May; 137(3):371-83. PubMed ID: 26896748
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial Sirtuin Network Reveals Dynamic SIRT3-Dependent Deacetylation in Response to Membrane Depolarization.
    Yang W; Nagasawa K; Münch C; Xu Y; Satterstrom K; Jeong S; Hayes SD; Jedrychowski MP; Vyas FS; Zaganjor E; Guarani V; Ringel AE; Gygi SP; Harper JW; Haigis MC
    Cell; 2016 Nov; 167(4):985-1000.e21. PubMed ID: 27881304
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The NAD+-dependent deacetylase SIRT2 attenuates oxidative stress and mitochondrial dysfunction and improves insulin sensitivity in hepatocytes.
    Lemos V; de Oliveira RM; Naia L; Szegö É; Ramos E; Pinho S; Magro F; Cavadas C; Rego AC; Costa V; Outeiro TF; Gomes P
    Hum Mol Genet; 2017 Nov; 26(21):4105-4117. PubMed ID: 28973648
    [TBL] [Abstract][Full Text] [Related]  

  • 11. SIRT2 knockout exacerbates insulin resistance in high fat-fed mice.
    Lantier L; Williams AS; Hughey CC; Bracy DP; James FD; Ansari MA; Gius D; Wasserman DH
    PLoS One; 2018; 13(12):e0208634. PubMed ID: 30533032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional characterization of NAD dependent de-acetylases SIRT1 and SIRT2 in B-Cell Chronic Lymphocytic Leukemia (CLL).
    Bhalla S; Gordon LI
    Cancer Biol Ther; 2016; 17(3):300-9. PubMed ID: 26794150
    [TBL] [Abstract][Full Text] [Related]  

  • 13. SIRT2 regulates oxidative stress-induced cell death through deacetylation of c-Jun NH
    Sarikhani M; Mishra S; Desingu PA; Kotyada C; Wolfgeher D; Gupta MP; Singh M; Sundaresan NR
    Cell Death Differ; 2018 Sep; 25(9):1638-1656. PubMed ID: 29449643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A role for the mitochondrial deacetylase Sirt3 in regulating energy homeostasis.
    Ahn BH; Kim HS; Song S; Lee IH; Liu J; Vassilopoulos A; Deng CX; Finkel T
    Proc Natl Acad Sci U S A; 2008 Sep; 105(38):14447-52. PubMed ID: 18794531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Increased expression of SIRT2 is a novel marker of cellular senescence and is dependent on wild type p53 status.
    Anwar T; Khosla S; Ramakrishna G
    Cell Cycle; 2016 Jul; 15(14):1883-97. PubMed ID: 27229617
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation and protection of mitochondrial physiology by sirtuins.
    Pereira CV; Lebiedzinska M; Wieckowski MR; Oliveira PJ
    Mitochondrion; 2012 Jan; 12(1):66-76. PubMed ID: 21787885
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Protocols for Cloning, Expression, and Functional Analysis of Sirtuin2 (SIRT2).
    Ji S; Doucette JR; Nazarali AJ
    Methods Mol Biol; 2016; 1436():189-99. PubMed ID: 27246216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SIRT2 deacetylase represses NFAT transcription factor to maintain cardiac homeostasis.
    Sarikhani M; Maity S; Mishra S; Jain A; Tamta AK; Ravi V; Kondapalli MS; Desingu PA; Khan D; Kumar S; Rao S; Inbaraj M; Pandit AS; Sundaresan NR
    J Biol Chem; 2018 Apr; 293(14):5281-5294. PubMed ID: 29440391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mitochondrial sirtuins.
    Huang JY; Hirschey MD; Shimazu T; Ho L; Verdin E
    Biochim Biophys Acta; 2010 Aug; 1804(8):1645-51. PubMed ID: 20060508
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Sirt2 suppresses inflammatory responses in collagen-induced arthritis.
    Lin J; Sun B; Jiang C; Hong H; Zheng Y
    Biochem Biophys Res Commun; 2013 Nov; 441(4):897-903. PubMed ID: 24211200
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 26.