BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

374 related articles for article (PubMed ID: 27460849)

  • 41. Bone-forming capacity of adult human nasal chondrocytes.
    Pippenger BE; Ventura M; Pelttari K; Feliciano S; Jaquiery C; Scherberich A; Walboomers XF; Barbero A; Martin I
    J Cell Mol Med; 2015 Jun; 19(6):1390-9. PubMed ID: 25689393
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Serially Transplanted Nonpericytic CD146(-) Adipose Stromal/Stem Cells in Silk Bioscaffolds Regenerate Adipose Tissue In Vivo.
    Frazier TP; Bowles A; Lee S; Abbott R; Tucker HA; Kaplan D; Wang M; Strong A; Brown Q; He J; Bunnell BA; Gimble JM
    Stem Cells; 2016 Apr; 34(4):1097-111. PubMed ID: 26865460
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A composite, off-the-shelf osteoinductive material for large, vascularized bone flap prefabrication.
    Kouba L; Bürgin J; Born G; Perale G; Schaefer DJ; Scherberich A; Pigeot S; Martin I
    Acta Biomater; 2022 Dec; 154():641-649. PubMed ID: 36261107
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Uncultivated stromal vascular fraction is equivalent to adipose-derived stem and stromal cells on porous polyurethrane scaffolds forming adipose tissue in vivo.
    Griessl M; Buchberger AM; Regn S; Kreutzer K; Storck K
    Laryngoscope; 2018 Jun; 128(6):E206-E213. PubMed ID: 29446455
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Spontaneous In Vivo Chondrogenesis of Bone Marrow-Derived Mesenchymal Progenitor Cells by Blocking Vascular Endothelial Growth Factor Signaling.
    Marsano A; Medeiros da Cunha CM; Ghanaati S; Gueven S; Centola M; Tsaryk R; Barbeck M; Stuedle C; Barbero A; Helmrich U; Schaeren S; Kirkpatrick JC; Banfi A; Martin I
    Stem Cells Transl Med; 2016 Dec; 5(12):1730-1738. PubMed ID: 27460852
    [TBL] [Abstract][Full Text] [Related]  

  • 46. An Endochondral Ossification-Based Approach to Bone Repair: Chondrogenically Primed Mesenchymal Stem Cell-Laden Scaffolds Support Greater Repair of Critical-Sized Cranial Defects Than Osteogenically Stimulated Constructs In Vivo.
    Thompson EM; Matsiko A; Kelly DJ; Gleeson JP; O'Brien FJ
    Tissue Eng Part A; 2016 Mar; 22(5-6):556-67. PubMed ID: 26896424
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Stromal vascular fraction promotes migration of fibroblasts and angiogenesis through regulation of extracellular matrix in the skin wound healing process.
    Bi H; Li H; Zhang C; Mao Y; Nie F; Xing Y; Sha W; Wang X; Irwin DM; Tan H
    Stem Cell Res Ther; 2019 Oct; 10(1):302. PubMed ID: 31623669
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Reconstruction of critical-size mandibular defects in immunoincompetent rats with human adipose-derived stromal cells.
    Streckbein P; Jäckel S; Malik CY; Obert M; Kähling C; Wilbrand JF; Zahner D; Heidinger K; Kampschulte M; Pons-Kühnemann J; Köhler K; Sauer H; Kramer M; Howaldt HP
    J Craniomaxillofac Surg; 2013 Sep; 41(6):496-503. PubMed ID: 23684529
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The adjuvant use of stromal vascular fraction and platelet-rich fibrin for autologous adipose tissue transplantation.
    Liu B; Tan XY; Liu YP; Xu XF; Li L; Xu HY; An R; Chen FM
    Tissue Eng Part C Methods; 2013 Jan; 19(1):1-14. PubMed ID: 22681647
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Bone Regeneration Using the Freshly Isolated Autologous Stromal Vascular Fraction of Adipose Tissue in Combination With Calcium Phosphate Ceramics.
    Prins HJ; Schulten EA; Ten Bruggenkate CM; Klein-Nulend J; Helder MN
    Stem Cells Transl Med; 2016 Oct; 5(10):1362-1374. PubMed ID: 27388241
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Evaluation of the stromal vascular fraction of adipose tissue as the basis for a stem cell-based tissue-engineered vascular graft.
    Krawiec JT; Liao HT; Kwan LL; D'Amore A; Weinbaum JS; Rubin JP; Wagner WR; Vorp DA
    J Vasc Surg; 2017 Sep; 66(3):883-890.e1. PubMed ID: 28017585
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Cartilage graft engineering by co-culturing primary human articular chondrocytes with human bone marrow stromal cells.
    Sabatino MA; Santoro R; Gueven S; Jaquiery C; Wendt DJ; Martin I; Moretti M; Barbero A
    J Tissue Eng Regen Med; 2015 Dec; 9(12):1394-403. PubMed ID: 23225781
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Acceleration of Bone Regeneration Induced by a Soft-Callus Mimetic Material.
    Longoni A; Utomo L; Robinson A; Levato R; Rosenberg AJWP; Gawlitta D
    Adv Sci (Weinh); 2022 Feb; 9(6):e2103284. PubMed ID: 34962103
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Tissue-engineered hypertrophic chondrocyte grafts enhanced long bone repair.
    Bernhard J; Ferguson J; Rieder B; Heimel P; Nau T; Tangl S; Redl H; Vunjak-Novakovic G
    Biomaterials; 2017 Sep; 139():202-212. PubMed ID: 28622604
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Feasibility of autologous bone marrow mesenchymal stem cell-derived extracellular matrix scaffold for cartilage tissue engineering.
    Tang C; Xu Y; Jin C; Min BH; Li Z; Pei X; Wang L
    Artif Organs; 2013 Dec; 37(12):E179-90. PubMed ID: 24251792
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparing various off-the-shelf methods for bone tissue engineering in a large-animal ectopic implantation model: bone marrow, allogeneic bone marrow stromal cells, and platelet gel.
    Geuze RE; Kruyt MC; Verbout AJ; Alblas J; Dhert WJ
    Tissue Eng Part A; 2008 Aug; 14(8):1435-43. PubMed ID: 18601585
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Extracellular matrix and α
    Di Maggio N; Martella E; Frismantiene A; Resink TJ; Schreiner S; Lucarelli E; Jaquiery C; Schaefer DJ; Martin I; Scherberich A
    Sci Rep; 2017 Mar; 7():44398. PubMed ID: 28290502
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Adipose Tissue-Derived Pericytes for Cartilage Tissue Engineering.
    Zhang J; Du C; Guo W; Li P; Liu S; Yuan Z; Yang J; Sun X; Yin H; Guo Q; Zhou C
    Curr Stem Cell Res Ther; 2017; 12(6):513-521. PubMed ID: 28325151
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adipose-derived stem cells combined with a demineralized cancellous bone substrate for bone regeneration.
    Shi Y; Niedzinski JR; Samaniego A; Bogdansky S; Atkinson BL
    Tissue Eng Part A; 2012 Jul; 18(13-14):1313-21. PubMed ID: 22500696
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Recapitulating endochondral ossification: a promising route to in vivo bone regeneration.
    Thompson EM; Matsiko A; Farrell E; Kelly DJ; O'Brien FJ
    J Tissue Eng Regen Med; 2015 Aug; 9(8):889-902. PubMed ID: 24916192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.