BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 27460862)

  • 1. Comparison of KP1019 and NAMI-A in tumour-mimetic environments.
    Gransbury GK; Kappen P; Glover CJ; Hughes JN; Levina A; Lay PA; Musgrave IF; Harris HH
    Metallomics; 2016 Aug; 8(8):762-73. PubMed ID: 27460862
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ruthenium anticancer agent KP1019 binds more tightly than NAMI-A to tRNA
    Dwyer BG; Johnson E; Cazares E; McFarlane Holman KL; Kirk SR
    J Inorg Biochem; 2018 May; 182():177-183. PubMed ID: 29501978
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The Deceptively Similar Ruthenium(III) Drug Candidates KP1019 and NAMI-A Have Different Actions. What Did We Learn in the Past 30 Years?
    Alessio E; Messori L
    Met Ions Life Sci; 2018 Feb; 18():. PubMed ID: 29394024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ru binding to RNA following treatment with the antimetastatic prodrug NAMI-A in Saccharomyces cerevisiae and in vitro.
    Hostetter AA; Miranda ML; DeRose VJ; McFarlane Holman KL
    J Biol Inorg Chem; 2011 Dec; 16(8):1177-85. PubMed ID: 21739255
    [TBL] [Abstract][Full Text] [Related]  

  • 5. EPR as a probe of the intracellular speciation of ruthenium(III) anticancer compounds.
    Webb MI; Walsby CJ
    Metallomics; 2013 Dec; 5(12):1624-33. PubMed ID: 24057014
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cellular uptake and subcellular distribution of ruthenium-based metallodrugs under clinical investigation versus cisplatin.
    Groessl M; Zava O; Dyson PJ
    Metallomics; 2011 Jun; 3(6):591-9. PubMed ID: 21399784
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biotransformations of anticancer ruthenium(III) complexes: an X-ray absorption spectroscopic study.
    Levina A; Aitken JB; Gwee YY; Lim ZJ; Liu M; Singharay AM; Wong PF; Lay PA
    Chemistry; 2013 Mar; 19(11):3609-19. PubMed ID: 23361836
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hypoxia-selective inhibition of angiogenesis development by NAMI-A analogues.
    Oszajca M; Collet G; Stochel G; Kieda C; Brindell M
    Biometals; 2016 Dec; 29(6):1035-1046. PubMed ID: 27812766
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inhibition of adhesion, migration and of α5β1 integrin in the HCT-116 colorectal cancer cells treated with the ruthenium drug NAMI-A.
    Pelillo C; Mollica H; Eble JA; Grosche J; Herzog L; Codan B; Sava G; Bergamo A
    J Inorg Biochem; 2016 Jul; 160():225-35. PubMed ID: 26961176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Appraisal of the redox behaviour of the antimetastatic ruthenium(III) complex [ImH][RuCl(4)(DMSO)(Im)], NAMI-A.
    Ravera M; Baracco S; Cassino C; Zanello P; Osella D
    Dalton Trans; 2004 Aug; (15):2347-51. PubMed ID: 15278129
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The hydrolysis of the anti-cancer ruthenium complex NAMI-A affects its DNA binding and antimetastatic activity: an NMR evaluation.
    Bacac M; Hotze AC; van der Schilden K; Haasnoot JG; Pacor S; Alessio E; Sava G; Reedijk J
    J Inorg Biochem; 2004 Feb; 98(2):402-12. PubMed ID: 14729322
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of the ruthenium-based drug NAMI-A on the roles played by TGF-β1 in the metastatic process.
    Brescacin L; Masi A; Sava G; Bergamo A
    J Biol Inorg Chem; 2015 Oct; 20(7):1163-73. PubMed ID: 26369538
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The hydrolysis mechanism of the anticancer ruthenium drugs NAMI-A and ICR investigated by DFT-PCM calculations.
    Vargiu AV; Robertazzi A; Magistrato A; Ruggerone P; Carloni P
    J Phys Chem B; 2008 Apr; 112(14):4401-9. PubMed ID: 18348562
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anticancer ruthenium(III) complex KP1019 interferes with ATP-dependent Ca2+ translocation by sarco-endoplasmic reticulum Ca2+-ATPase (SERCA).
    Sadafi FZ; Massai L; Bartolommei G; Moncelli MR; Messori L; Tadini-Buoninsegni F
    ChemMedChem; 2014 Aug; 9(8):1660-4. PubMed ID: 24920093
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In vitro and in vivo biological activity screening of Ru(III) complexes involving 6-benzylaminopurine derivatives with higher pro-apoptotic activity than NAMI-A.
    Trávníček Z; Matiková-Mal'arová M; Novotná R; Vančo J; Stěpánková K; Suchý P
    J Inorg Biochem; 2011 Jul; 105(7):937-48. PubMed ID: 21536006
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of a ruthenium(III)/NAMI-A adduct with bovine serum albumin that exhibits a high anti-metastatic activity.
    Liu M; Lim ZJ; Gwee YY; Levina A; Lay PA
    Angew Chem Int Ed Engl; 2010 Feb; 49(9):1661-4. PubMed ID: 20127775
    [No Abstract]   [Full Text] [Related]  

  • 17. Induction of Cytotoxicity in Pyridine Analogues of the Anti-metastatic Ru(III) Complex NAMI-A by Ferrocene Functionalization.
    Mu C; Chang SW; Prosser KE; Leung AW; Santacruz S; Jang T; Thompson JR; Yapp DT; Warren JJ; Bally MB; Beischlag TV; Walsby CJ
    Inorg Chem; 2016 Jan; 55(1):177-90. PubMed ID: 26652771
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Control of ligand-exchange processes and the oxidation state of the antimetastatic Ru(III) complex NAMI-A by interactions with human serum albumin.
    Webb MI; Walsby CJ
    Dalton Trans; 2011 Feb; 40(6):1322-31. PubMed ID: 21210063
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory effects of NAMI-A-like ruthenium complexes on prion neuropeptide fibril formation.
    Wang X; Zhu D; Zhao C; He L; Du W
    Metallomics; 2015 May; 7(5):837-46. PubMed ID: 25856332
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tracking antitumor metallodrugs: promising agents with the Ru(II)- and Fe(II)-cyclopentadienyl scaffolds.
    Morais TS; Valente A; Tomaz AI; Marques F; Garcia MH
    Future Med Chem; 2016 Apr; 8(5):527-44. PubMed ID: 27096164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.