These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

180 related articles for article (PubMed ID: 27461057)

  • 21. The mouse carcinogenicity study is no longer a scientifically justifiable core data requirement for the safety assessment of pesticides.
    Billington R; Lewis RW; Mehta JM; Dewhurst I
    Crit Rev Toxicol; 2010 Jan; 40(1):35-49. PubMed ID: 20144135
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Ecotoxicity prediction by adaptive fuzzy partitioning: comparing descriptors computed on 2D and 3D structures.
    Piclin N; Pintore M; Wechman C; Roncaglioni A; Benfenati E; Chretien JR
    SAR QSAR Environ Res; 2006 Apr; 17(2):225-51. PubMed ID: 16644559
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative structure-toxicity relationship (QSTR) studies on the organophosphate insecticides.
    Can A
    Toxicol Lett; 2014 Nov; 230(3):434-43. PubMed ID: 25149906
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prediction of the rodent carcinogenicity of 60 pesticides by the DEREKfW expert system.
    Crettaz P; Benigni R
    J Chem Inf Model; 2005; 45(6):1864-73. PubMed ID: 16309294
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Novel Uses of In Vitro Data to Develop Quantitative Biological Activity Relationship Models for in Vivo Carcinogenicity Prediction.
    Pradeep P; Povinelli RJ; Merrill SJ; Bozdag S; Sem DS
    Mol Inform; 2015 Apr; 34(4):236-45. PubMed ID: 27490169
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of the rodent carcinogenicity of organic compounds from their chemical structures using the FALS method.
    Moriguchi I; Hirano H; Hirono S
    Environ Health Perspect; 1996 Oct; 104 Suppl 5(Suppl 5):1051-8. PubMed ID: 8933054
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Assessing the toxic effects of ethylene glycol ethers using Quantitative Structure Toxicity Relationship models.
    Ruiz P; Mumtaz M; Gombar V
    Toxicol Appl Pharmacol; 2011 Jul; 254(2):198-205. PubMed ID: 21034757
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Prediction of carcinogenicity for diverse chemicals based on substructure grouping and SVM modeling.
    Tanabe K; Lučić B; Amić D; Kurita T; Kaihara M; Onodera N; Suzuki T
    Mol Divers; 2010 Nov; 14(4):789-802. PubMed ID: 20186479
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A combination of 3D-QSAR, docking, local-binding energy (LBE) and GRID study of the species differences in the carcinogenicity of benzene derivatives chemicals.
    Fratev F; Benfenati E
    J Mol Graph Model; 2008 Sep; 27(2):147-60. PubMed ID: 18495507
    [TBL] [Abstract][Full Text] [Related]  

  • 30. QSAR study for carcinogenicity in a large set of organic compounds.
    Duchowicz PR; Comelli NC; Ortiz EV; Castro EA
    Curr Drug Saf; 2012 Sep; 7(4):282-8. PubMed ID: 23062240
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Quantitative and qualitative models for carcinogenicity prediction for non-congeneric chemicals using CP ANN method for regulatory uses.
    Fjodorova N; Vračko M; Tušar M; Jezierska A; Novič M; Kühne R; Schüürmann G
    Mol Divers; 2010 Aug; 14(3):581-94. PubMed ID: 19685274
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Predictive classification-based QSTR models for toxicity study of diverse pesticides on multiple avian species.
    Banjare P; Singh J; Roy PP
    Environ Sci Pollut Res Int; 2021 Apr; 28(14):17992-18003. PubMed ID: 33410022
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Dependence of the carcinogenicity of nitro compounds on their structural characteristics].
    Abilev SK; Tarasov VA; Tarasov AV; Mustafaev ON; Mel'nik VA
    Genetika; 2006 May; 42(5):611-9. PubMed ID: 16808241
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predictive models for carcinogenicity and mutagenicity: frameworks, state-of-the-art, and perspectives.
    Benfenati E; Benigni R; Demarini DM; Helma C; Kirkland D; Martin TM; Mazzatorta P; Ouédraogo-Arras G; Richard AM; Schilter B; Schoonen WG; Snyder RD; Yang C
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2009 Apr; 27(2):57-90. PubMed ID: 19412856
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using quantitative structure-activity relationships (QSAR) to predict toxic endpoints for polycyclic aromatic hydrocarbons (PAH).
    Bruce ED; Autenrieth RL; Burghardt RC; Donnelly KC; McDonald TJ
    J Toxicol Environ Health A; 2008; 71(16):1073-84. PubMed ID: 18569619
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Comparison and possible use of in silico tools for carcinogenicity within REACH legislation.
    Milan C; Schifanella O; Roncaglioni A; Benfenati E
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2011 Oct; 29(4):300-23. PubMed ID: 22107165
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Classification models for identifying substances exhibiting acute contact toxicity in honeybees (Apis mellifera)
    Venko K; Drgan V; Novič M
    SAR QSAR Environ Res; 2018 Sep; 29(9):743-754. PubMed ID: 30220217
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CORAL: QSAR models for carcinogenicity of organic compounds for male and female rats.
    Toropova AP; Toropov AA
    Comput Biol Chem; 2018 Feb; 72():26-32. PubMed ID: 29310001
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Identification of structural fingerprints for
    Mondal D; Ghosh K; Baidya ATK; Gantait AM; Gayen S
    Toxicol Mech Methods; 2020 May; 30(4):257-265. PubMed ID: 31876230
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Combining machine learning models of in vitro and in vivo bioassays improves rat carcinogenicity prediction.
    Guan D; Fan K; Spence I; Matthews S
    Regul Toxicol Pharmacol; 2018 Apr; 94():8-15. PubMed ID: 29337192
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.