These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 27461068)

  • 1. Comparing the performance of trained radiographers against experienced radiologists in the UK lung cancer screening (UKLS) trial.
    Nair A; Gartland N; Barton B; Jones D; Clements L; Screaton NJ; Holemans JA; Duffy SW; Field JK; Baldwin DR; Hansell DM; Devaraj A
    Br J Radiol; 2016 Oct; 89(1066):20160301. PubMed ID: 27461068
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of trained radiographers as concurrent readers on performance and reading time of experienced radiologists in the UK Lung Cancer Screening (UKLS) trial.
    Nair A; Screaton NJ; Holemans JA; Jones D; Clements L; Barton B; Gartland N; Duffy SW; Baldwin DR; Field JK; Hansell DM; Devaraj A
    Eur Radiol; 2018 Jan; 28(1):226-234. PubMed ID: 28643093
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of computer-assisted radiographer reporting in lung cancer screening programmes.
    Hall H; Ruparel M; Quaife SL; Dickson JL; Horst C; Tisi S; Batty J; Woznitza N; Ahmed A; Burke S; Shaw P; Soo MJ; Taylor M; Navani N; Bhowmik A; Baldwin DR; Duffy SW; Devaraj A; Nair A; Janes SM
    Eur Radiol; 2022 Oct; 32(10):6891-6899. PubMed ID: 35567604
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer-aided detection (CAD) in lung cancer screening at chest MDCT: ROC analysis of CAD versus radiologist performance.
    Fraioli F; Bertoletti L; Napoli A; Pediconi F; Calabrese FA; Masciangelo R; Catalano C; Passariello R
    J Thorac Imaging; 2007 Aug; 22(3):241-6. PubMed ID: 17721333
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Validation of a deep learning computer aided system for CT based lung nodule detection, classification, and growth rate estimation in a routine clinical population.
    Murchison JT; Ritchie G; Senyszak D; Nijwening JH; van Veenendaal G; Wakkie J; van Beek EJR
    PLoS One; 2022; 17(5):e0266799. PubMed ID: 35511758
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessment of radiologist performance in the detection of lung nodules: dependence on the definition of "truth".
    Armato SG; Roberts RY; Kocherginsky M; Aberle DR; Kazerooni EA; Macmahon H; van Beek EJ; Yankelevitz D; McLennan G; McNitt-Gray MF; Meyer CR; Reeves AP; Caligiuri P; Quint LE; Sundaram B; Croft BY; Clarke LP
    Acad Radiol; 2009 Jan; 16(1):28-38. PubMed ID: 19064209
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Performance of Radiologists and Radiographers in Double Reading Mammograms: The UK National Health Service Breast Screening Program.
    Chen Y; James JJ; Michalopoulou E; Darker IT; Jenkins J
    Radiology; 2023 Jan; 306(1):102-109. PubMed ID: 36098643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Performance of a deep learning-based lung nodule detection system as an alternative reader in a Chinese lung cancer screening program.
    Cui X; Zheng S; Heuvelmans MA; Du Y; Sidorenkov G; Fan S; Li Y; Xie Y; Zhu Z; Dorrius MD; Zhao Y; Veldhuis RNJ; de Bock GH; Oudkerk M; van Ooijen PMA; Vliegenthart R; Ye Z
    Eur J Radiol; 2022 Jan; 146():110068. PubMed ID: 34871936
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of radiologist and CAD performance in the detection of CT-confirmed subtle pulmonary nodules on digital chest radiographs.
    Bley TA; Baumann T; Saueressig U; Pache G; Treier M; Schaefer O; Neitzel U; Langer M; Kotter E
    Invest Radiol; 2008 Jun; 43(6):343-8. PubMed ID: 18496038
    [TBL] [Abstract][Full Text] [Related]  

  • 10. JOURNAL CLUB: Computer-Aided Detection of Lung Nodules on CT With a Computerized Pulmonary Vessel Suppressed Function.
    Lo SB; Freedman MT; Gillis LB; White CS; Mun SK
    AJR Am J Roentgenol; 2018 Mar; 210(3):480-488. PubMed ID: 29336601
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prospective Pilot Evaluation of Radiologists and Computer-aided Pulmonary Nodule Detection on Ultra-low-Dose CT With Tin Filtration.
    Takahashi EA; Koo CW; White DB; Lindell RM; Sykes AG; Levin DL; Kuzo RS; Wolf M; Bogoni L; Carter RE; McCollough CH; Fletcher JG
    J Thorac Imaging; 2018 Nov; 33(6):396-401. PubMed ID: 30048344
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer-assisted detection of pulmonary nodules: performance evaluation of an expert knowledge-based detection system in consensus reading with experienced and inexperienced chest radiologists.
    Marten K; Seyfarth T; Auer F; Wiener E; Grillhösl A; Obenauer S; Rummeny EJ; Engelke C
    Eur Radiol; 2004 Oct; 14(10):1930-8. PubMed ID: 15235812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pulmonary nodules on multi-detector row CT scans: performance comparison of radiologists and computer-aided detection.
    Rubin GD; Lyo JK; Paik DS; Sherbondy AJ; Chow LC; Leung AN; Mindelzun R; Schraedley-Desmond PK; Zinck SE; Naidich DP; Napel S
    Radiology; 2005 Jan; 234(1):274-83. PubMed ID: 15537839
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [The performance of digital chest radiographs in the detection and diagnosis of pulmonary nodules and the consistency among readers].
    Liang M; Zhao SJ; Zhou LN; Xu XJ; Wang YW; Niu L; Wang HH; Tang W; Wu N
    Zhonghua Zhong Liu Za Zhi; 2023 Mar; 45(3):265-272. PubMed ID: 36944548
    [No Abstract]   [Full Text] [Related]  

  • 15. The Lung Image Database Consortium (LIDC): an evaluation of radiologist variability in the identification of lung nodules on CT scans.
    Armato SG; McNitt-Gray MF; Reeves AP; Meyer CR; McLennan G; Aberle DR; Kazerooni EA; MacMahon H; van Beek EJ; Yankelevitz D; Hoffman EA; Henschke CI; Roberts RY; Brown MS; Engelmann RM; Pais RC; Piker CW; Qing D; Kocherginsky M; Croft BY; Clarke LP
    Acad Radiol; 2007 Nov; 14(11):1409-21. PubMed ID: 17964464
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Small pulmonary nodules: effect of two computer-aided detection systems on radiologist performance.
    Das M; Mühlenbruch G; Mahnken AH; Flohr TG; Gündel L; Stanzel S; Kraus T; Günther RW; Wildberger JE
    Radiology; 2006 Nov; 241(2):564-71. PubMed ID: 17057074
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inter-observer variability in mammography screening and effect of type and number of readers on screening outcome.
    Duijm LE; Louwman MW; Groenewoud JH; van de Poll-Franse LV; Fracheboud J; Coebergh JW
    Br J Cancer; 2009 Mar; 100(6):901-7. PubMed ID: 19259088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lung cancer screening with CT: evaluation of radiologists and different computer assisted detection software (CAD) as first and second readers for lung nodule detection at different dose levels.
    Christe A; Leidolt L; Huber A; Steiger P; Szucs-Farkas Z; Roos JE; Heverhagen JT; Ebner L
    Eur J Radiol; 2013 Dec; 82(12):e873-8. PubMed ID: 24074648
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computer-aided detection of lung nodules on multidetector CT in concurrent-reader and second-reader modes: a comparative study.
    Matsumoto S; Ohno Y; Aoki T; Yamagata H; Nogami M; Matsumoto K; Yamashita Y; Sugimura K
    Eur J Radiol; 2013 Aug; 82(8):1332-7. PubMed ID: 23480965
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of emphysema on AI software and human reader performance in lung nodule detection from low-dose chest CT.
    Sourlos N; Pelgrim G; Wisselink HJ; Yang X; de Jonge G; Rook M; Prokop M; Sidorenkov G; van Tuinen M; Vliegenthart R; van Ooijen PMA
    Eur Radiol Exp; 2024 May; 8(1):63. PubMed ID: 38764066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.