These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 27461187)

  • 21. Electrochemical fabrication of ZnO-CdSe core-shell nanorod arrays for efficient photoelectrochemical water splitting.
    Miao J; Yang HB; Khoo SY; Liu B
    Nanoscale; 2013 Nov; 5(22):11118-24. PubMed ID: 24077389
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancement of Charge Separation and Hydrogen Evolution on Particulate La
    Liu J; Hisatomi T; Murthy DH; Zhong M; Nakabayashi M; Higashi T; Suzuki Y; Matsuzaki H; Seki K; Furube A; Shibata N; Katayama M; Minegishi T; Domen K
    J Phys Chem Lett; 2017 Jan; 8(2):375-379. PubMed ID: 28033010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Sonochemical assisted synthesis of RGO/ZnO nanowire arrays for photoelectrochemical water splitting.
    Khan I; Ibrahim AAM; Sohail M; Qurashi A
    Ultrason Sonochem; 2017 Jul; 37():669-675. PubMed ID: 28427681
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Carbon quantum dots decorated Cu2S nanowire arrays for enhanced photoelectrochemical performance.
    Li M; Zhao R; Su Y; Yang Z; Zhang Y
    Nanoscale; 2016 Apr; 8(16):8559-67. PubMed ID: 26693806
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Growth of NiMn layered double hydroxides on nanopyramidal BiVO
    Zhang T; Lu Y; Wang J; Wang Z; Zhang W; Wang X; Su J; Guo L
    Nanotechnology; 2020 Mar; 31(11):115707. PubMed ID: 31747640
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Defect-rich MoS
    Lin F; Tian R; Dong P; Jiang G; He F; Wang S; Fu R; Zhao C; Gu YY; Wang S
    J Colloid Interface Sci; 2023 Feb; 631(Pt A):133-142. PubMed ID: 36375298
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nanocrystalline anatase TiO2/reduced graphene oxide composite films as photoanodes for photoelectrochemical water splitting studies: the role of reduced graphene oxide.
    Morais A; Longo C; Araujo JR; Barroso M; Durrant JR; Nogueira AF
    Phys Chem Chem Phys; 2016 Jan; 18(4):2608-16. PubMed ID: 26698605
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Orthorhombic NiSe
    Lee S; Cha S; Myung Y; Park K; Kwak IH; Kwon IS; Seo J; Lim SA; Cha EH; Park J
    ACS Appl Mater Interfaces; 2018 Oct; 10(39):33198-33204. PubMed ID: 30188679
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quasi-hydrophilic black silicon photocathodes with inverted pyramid arrays for enhanced hydrogen generation.
    Zhao S; Yuan G; Wang Q; Liu W; Wang R; Yang S
    Nanoscale; 2020 Jan; 12(1):316-325. PubMed ID: 31825048
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Integrating Semiconducting Catalyst of ReS
    Zhao H; Dai Z; Xu X; Pan J; Hu J
    ACS Appl Mater Interfaces; 2018 Jul; 10(27):23074-23080. PubMed ID: 29932637
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Double-Layer Graphene Outperforming Monolayer as Catalyst on Silicon Photocathode for Hydrogen Production.
    Sim U; Moon J; Lee J; An J; Ahn HY; Kim DJ; Jo I; Jeon C; Han S; Hong BH; Nam KT
    ACS Appl Mater Interfaces; 2017 Feb; 9(4):3570-3580. PubMed ID: 28075553
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Large-area ordered P-type Si nanowire arrays as photocathode for highly efficient photoelectrochemical hydrogen generation.
    Huang S; Zhang H; Wu Z; Kong D; Lin D; Fan Y; Yang X; Zhong Z; Huang S; Jiang Z; Cheng C
    ACS Appl Mater Interfaces; 2014 Aug; 6(15):12111-8. PubMed ID: 25020241
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhanced photoelectrochemical water splitting by oxides heterojunction photocathode coupled with Ag.
    Lu X; Liu Z
    Dalton Trans; 2017 Aug; 46(30):9886-9894. PubMed ID: 28715000
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Direct Synthesis of Molybdenum Phosphide Nanorods on Silicon Using Graphene at the Heterointerface for Efficient Photoelectrochemical Water Reduction.
    Jun SE; Choi S; Choi S; Lee TH; Kim C; Yang JW; Choe WO; Im IH; Kim CJ; Jang HW
    Nanomicro Lett; 2021 Mar; 13(1):81. PubMed ID: 34138338
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Recent Advances in Visible-Light-Driven Photoelectrochemical Water Splitting: Catalyst Nanostructures and Reaction Systems.
    Chen X; Zhang Z; Chi L; Nair AK; Shangguan W; Jiang Z
    Nanomicro Lett; 2016; 8(1):1-12. PubMed ID: 30464988
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Black 3D-TiO
    Meng M; Feng Y; Li C; Gan Z; Yuan H; Zhang H
    Nanomaterials (Basel); 2022 Apr; 12(9):. PubMed ID: 35564156
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Multichannel Charge Transport of a BiVO
    Zhang Z; Chen B; Baek M; Yong K
    ACS Appl Mater Interfaces; 2018 Feb; 10(7):6218-6227. PubMed ID: 29377671
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Epitaxial growth of ZnO Nanodisks with large exposed polar facets on nanowire arrays for promoting photoelectrochemical water splitting.
    Chen H; Wei Z; Yan K; Bai Y; Zhu Z; Zhang T; Yang S
    Small; 2014 Nov; 10(22):4760-9. PubMed ID: 24990800
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoelectrochemical Water Splitting with p-Type Metal Oxide Semiconductor Photocathodes.
    Jang YJ; Lee JS
    ChemSusChem; 2019 May; 12(9):1835-1845. PubMed ID: 30614648
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Photoelectrochemical Water-Splitting Using CuO-Based Electrodes for Hydrogen Production: A Review.
    Siavash Moakhar R; Hosseini-Hosseinabad SM; Masudy-Panah S; Seza A; Jalali M; Fallah-Arani H; Dabir F; Gholipour S; Abdi Y; Bagheri-Hariri M; Riahi-Noori N; Lim YF; Hagfeldt A; Saliba M
    Adv Mater; 2021 Aug; 33(33):e2007285. PubMed ID: 34117806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.